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Abstract. SRAM-based FPGAs are increasingly popular in the
aerospace industry for their field programmability and low cost. How-
ever, they suffer from cosmic radiation induced Single Event Upsets
(SEUs), commonly known as soft errors. In safety-critical applications,
the dependability of the design is a prime concern since failures may have
catastrophic consequences. An early analysis of dependability and per-
formance of such safety-critical applications can reduce the design effort
and increases the confidence. This paper introduces a novel methodology
based on probabilistic model checking, to analyze the dependability and
performability properties of safety-critical systems for early design deci-
sions. Starting from a high-level description of a model, a Markov reward
model is constructed from the Control Data Flow Graph (CDFG) of the
system and a component characterization library targeting FPGAs. Such
an exhaustive model captures all the failures and repairs possible in the
system within the radiation environment. We present a case study based
on a benchmark circuit to illustrate the applicability of the proposed
approach and to demonstrate that a wide range of useful dependabil-
ity and performability properties can be analyzed using our proposed
methodology.

1 Introduction

Dependability and performability are major concerns in safety-critical and
mission-critical applications common in the aerospace industry. Electronic com-
ponents are exposed to more intense cosmic rays when flying at high altitude. It
has been reported that long-haul aircrafts flying at airplane altitudes experience
a neutron-flux roughly 500 times higher than that at ground level in the worst
case [13]. For space missions, the rate of single event effects can be much worse.
Due to field programmability, absence of non-recurring engineering costs, low
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manufacturing costs and other advantages, SRAM-based FPGAs are increas-
ingly attractive. Unfortunately, a great disadvantage of these devices is their
sensitivity to radiation effects that can cause bit flips in memory elements and
ionisation induced transient faults in semiconductors, commonly known as soft
errors and soft faults [1,21]. Therefore, in aerospace industry, the possibility of
cosmic radiation induced soft error grows dramatically at higher altitudes. How-
ever, an early analysis of dependability and performance impacts of such errors
and faults on the design provides opportunities for the designer to develop more
reliable and efficient designs and may reduce the overall cost associated with the
design effort. Our work aims at achieving these goals.

This paper proposes a means by which formal verification methods can be
applied at early design stages to analyze the dependability and performability of
reconfigurable systems. In particular, the focus is on probabilistic model checking
[8]. Probabilistic model checking is used to verify the systems whose behavior is
stochastic in nature. It is mainly based on the construction and analysis of
a probabilistic model, typically a Markov chain or a Markov process. These
models are constructed in an exhaustive fashion. Indeed, the models explore all
possible states that might occur in a system. Probabilistic model checking can
be used to analyze a wide range of dependability and performability properties.
In contrast, in discrete-event simulations, approximate results are generated by
averaging results from large number of random samples. Probabilistic model
checking applies numerical computations to provide exact and accurate results.

To analyze a design at high level, we start from its Control Data Flow Graph
(CDFG) [17] representation, obtained from a high-level description of the design
expressed using a language such as C++. The possible implementation options
of the CDFG, with different sets of available components and their possible fail-
ures, fault recovery and repairs in the radiation environment are then modeled
with the PRISM modeling language [24]. The failure rate of the components are
obtained from a worst-case component characterization library. Since the FPGA
repair mechanism known as scrubbing [5] can be used in conjunction with other
forms of mitigation techniques such as TMR [6] to increase the reliability, we
demonstrate in this paper that rescheduling [4,16] could be a good alternative
candidate in some cases compared to a redundancy-based solution. In the pro-
posed methodology, we show how to use the PRISM model checker tool to model
and evaluate dependability, performability and area trade-offs between available
design options. Current work in this area either separates the dependability
analysis from performance/area analysis, or do not analyze such safety-critical
applications at early design stage. Commercial tools for reliability analysis, such
as Isograph [15], cannot be used for performance evaluation of such systems as
they do not support Markov reward models [27]. Since the probabilistic model
checker PRISM allows reward modeling, our work overcomes this limitation.
The motivation of the work, the application area, the fault model, considered
fault tolerance techniques and the use of probabilistic model checking for system
analysis, makes our work unique.
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The remainder of the paper is organized as follows. Section 2 reviews moti-
vations and related works. Section 3 describes the background about soft error
effects, soft error mitigation techniques and probabilistic model checking. The
proposed methodology and modeling details are discussed in Sect. 4, and in
Sect. 5, we present a case study using our proposed methodology. Section 6 con-
cludes the paper with future research directions.

2 Motivation and Related Work

Consider the CDFG of a synchronous dataflow DSP application shown in Fig. 1.
Based on data dependencies, this application can be carried out in a minimum of
three control steps using the CDFG-1 shown in Fig. 2, with two adders and two
multipliers. Such implementation provides a throughput of 1/3 = 0.33. Another
alternative consists of implementing the application with only one multiplier and
two adders but in four control steps, as shown by CDFG-2 in Fig. 2. In that case
the throughput is 0.25. Based on the priority of throughput or area metric, the
appropriate CDFG is selected.

However, inclusion of a reliability metric based on a fault recovery mecha-
nism can make the case more complex and difficult to evaluate. When a resource
fails (due to a configuration bit flip), an alternative schedule can be derived to
continue the system operation using the remaining resources, most likely at a
lower throughput. For example, to maximize the throughput, CDFG-1 is imple-
mented. For a single component failure, e.g. a multiplier, the application can
be rescheduled to implement CDFG-2 with lower throughput. Such fault tol-
erance approach was introduced in [4,12,16] for fault-secure microarchitectures
and multiprocessors. For FPGA-based designs, such a fault recovery technique
can be adopted as well and we explore the dependability, area and performance
trade-offs for such systems. We must mention that the controller for reschedul-
ing the operations is assumed to be fault-free. This controller can be imple-
mented in a separate chip with proper fault-tolerance mechanisms. Considering
the example again, we observe that, if another multiplier fails, the CDFG cannot
be rescheduled and the system fails to continue its operation. For FPGA-based
safety-critical applications, systematic system failure at first occurrence of a soft-
error is not acceptable. Scrubbing with partial reconfiguration capability [5] can
repair bit-flips in the configuration memory without disrupting system opera-
tions. Scrubbing can be done at a specified rate meaning that there might be

Fig. 1. Sample CDFG
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Fig. 2. CDFGs scheduled over available resources

a period of time between the moment the upset occurs and the moment when
it is repaired. That is why another form of mitigation is required, such as a
redundancy-based solution [6]. In this work, we use probabilistic model checking
to evaluate the dependability and performability vs area trade-offs and demon-
strate that in some cases, a redundancy-based solution might not be the best
choice as one may expect. Alternatively, for those cases, rescheduling in conjunc-
tion with scrubbing can be a good option.

High-level synthesis algorithms such as forced-directed list scheduling [23]
can generate different CDFGs depending on components availability. Switching
to another CDFG allows recovering from a failure while a system can continue
its operation, possibly with a lower throughput. For many years, fault tolerance
techniques and reliability analysis of complex systems have been active research
area both in academia and industry. In [29], the authors proposed a reliability-
centric high-level synthesis approach to address soft errors. Their framework
uses reliability characterization to select the most reliable implementation for
each operation fulfilling latency and area constraints. In addition, researchers
dedicated lots of efforts in modeling the behavior of gracefully degradable large-
scale systems using continuous-time Markov reward models [3,14]. In [26], a
case study is presented to measure the performance of a multiprocessor system
using a continuous-time Markov reward model. An approach for analyzing per-
formance, area and reliability using a Markov reward model is presented in [19].
The authors used transistor lifetimes to model the reliability and performance,
hence the model is composed of non-repairable modules. Use of a non-formal
commercial tool makes their approach quite rigid in terms of analysis. Moreover,
in their proposed approach, the reward calculation is manual, as the traditional
commercial tools for reliability analysis do not support reward modeling.

Even though our model has similarities to performance analysis, our approach
is more flexible because we use probabilistic model checking. Our work focuses
on a different fault model: cosmic radiation induced configuration bit-flips in
FPGAs. Since scrubbing is possible in FPGA designs, we also add repair to our
Markov reward model. In consideration of the failure type, repair capability, use
of a characterization library to model the system, the application of our work and
our methodology is different from and novel when compared to all the related
works described above. To our knowledge, this is the first attempt to analyze the
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dependability and performance to area trade-offs for such safety-critical systems
at early design stage using probabilistic model checking.

3 Background

3.1 Soft Errors

In SRAM-based FPGAs, the configuration bitstream determines the routing
and functionality of the design. However, a change in the value of one of the
SRAM cells can potentially modify the functionality of the design and can lead
to catastrophic consequences. The major reason for such inadvertent bit flips
in high-altitude is soft errors caused by cosmic radiation. When these parti-
cles impact a silicon substrate, they result in the generation of excess carriers,
which when deposited on the internal capacitances of a circuit node can result
in an upset to the data value stored. The lowering of supply voltages and nodal
capacitances with recent technologies have increased the possibility of observing
bit flips. Due to this increasing concern, there are several mitigation techniques
proposed for tackling the soft error problem.

A mainstream SEU repair technique in SRAM-based FPGAs is configura-
tion scrubbing [11]. Scrubbing refers to the periodic readback of the FPGA’s
configuration memory, comparing it to a known good copy, and writing back
any corrections required. By periodically scrubbing a device, maximum limits
may be placed on the period of time that a configuration error can be present
in a device. A variation to improve scrubbing is known as partial reconfiguration
[5]. This is beneficial as it allows a system to repair bit-flips in the configuration
memory without disrupting its operations. Configuration scrubbing prevents the
build-up of multiple configuration faults. Although scrubbing ensures that the
configuration bitstream can remain relatively free of errors, over the long run,
there is a period of time between the moment an upset occurs and the moment
when it is repaired in which the FPGA configuration is incorrect. Thus the
design may not function correctly during that time. To completely mitigate the
errors caused by SEUs, scrubbing is used in conjunction with another form of
mitigation that masks the faults in the bitstream.

A scrub rate describes how often a scrub cycle should occur. It is denoted by
either a unit of time between scrubs, or a percentage (scrub cycle time divided
by the time between scrubs). There are direct relationships between scrubbing
rate, device size, device reliability and device safety, hence the scrub rate should
be determined by the expected upset rate of the device for the given application.

3.2 Probabilistic Model Checking

Model checking [8] is a well established formal verification technique to verify
the correctness of finite-state systems. Given a formal model of the system to be
verified in terms of labelled state transitions and the properties to be verified in
terms of temporal logic, the model checking algorithm exhaustively and auto-
matically explores all the possible states in a system to verify if the property
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is satisfiable or not. If not, a counterexample is generated. Probabilistic model
checking deals with systems that exhibit stochastic behaviour, such as fault-
tolerant systems. Probabilistic model checking is based on the construction and
analysis of a probabilistic model of the system, typically a Markov chain. In this
paper, we focus on the continuous-time Markov chains (CTMCs) and Markov
reward models [27], widely used for reliability and performance analysis.

A CTMC comprises a set of states S and a transition rate matrix R : S×S →
R≥0. The rate R(s, s′) defines the delay before which a transition between states
s and s′ takes place. If R(s, s′) �= 0 then the probability that a transition between
the states s and s′ might take place within time t can be defined as 1−e−R(s,s′)×t.
No transitions will take place if R(s, s′) = 0. Exponentially distributed delays
are suitable for modelling component lifetimes and inter-arrival times.

In the model-checking approach to performance and dependability analysis,
a model of the system under consideration is required together with a desired
property or performance/dependability measure. In case of stochastic modelling,
such models are typically CTMCs, while properties are usually expressed in some
form of extended temporal logic such as Continuous Stochastic Logic (CSL) [2], a
stochastic variant of the well-known Computational Tree Logic (CTL) [8]. Below
are a number of illustrative examples with their natural language translation:

1. P≥0.98[♦ complete] - “The probability of the system eventually completing
its execution successfully is at least 0.98”.

2. shutdown ⇒ P≥0.95[¬ fail U≤200 up] - “Once a shutdown has occurred,
with probability 0.95 or greater, the system will successfully recover within 200 h
and without any further failures occurring”.

Additional properties can be specified by adding the notion of rewards. Each
state (and/or transition) of the model is assigned a real-valued reward, allowing
queries such as:

1. R = [♦ success] - “What is the expected reward accumulated before the
system successfully terminates?”

Rewards can be used to specify a wide range of measures of interest, for exam-
ple, the number of correctly delivered packets or the time that the system is
operational. Of course, conversely, the rewards can be considered as costs, such
as power consumption, expected number of failures, etc.

4 Proposed Methodology

In Fig. 3, we present the proposed methodology, which reuses some elements from
a methodology proposed in [28], namely the CDFG extraction and the concept
of using a characterization library (which was created with a different set of
tools). We start from the dataflow graph of the application. Different tools such
as GAUT [9], SUIF [10] etc. could be used to extract the dataflow graph from a
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Fig. 3. Proposed methodology

high-level design description expressed using a language such as C++. As men-
tioned earlier, a CDFG can be implemented with different component allocations
(design options). We will refer to the term design options as configurations in the
rest of the paper. Upon a failure, if possible with available resources, the CDFG
is rescheduled for fault recovery and the system continues its operation -that
is reflected in the CTMC as the next states. For rescheduling the CDFG with
available components, a high-level synthesis algorithm, such as forced-directed
list scheduling [23] can be used. To analyze each configuration, we model them
with the PRISM modeling language. Such a model is described as a number of
modules, each of which corresponds to a component of the system. Each mod-
ule has a set of finite-ranged variables representing different types of resources.
The domain of the variables represent the number of available components of a
specific resource. The whole model is constructed as the parallel composition of
these modules. The behaviour of an individual module is specified by a set of
guarded commands. For a CTMC, as is the case here, it can be represented in
the following form:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all the modules in the model. The
update comprises of rate and action. A rate is an expression which evaluates to
a positive real number. The term action describes a transition of the module in
terms of how its variables should be updated. The interpretation of the command
is that if the guard is satisfied, then the module can make the corresponding
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transition with that associated rate. A very simple command for a module with
only one variable z might be:

[] <z = 0> → 7.5 : <z’ = z + 1> ;

which states that, if z is equal to 0, then it will be incremented by one and
this action occurs with rate 7.5. For another example, consider an application
that requires 2 adders and 2 multipliers and such a configuration in the PRISM
modeling language can be described as follows:

module adder
a : [0.. num_A] init num_A;
[] (a > 0) -> a*lambda_A : (a’ = a - 1);
[] (a < num_A) -> miu : (a’ = num_A);

endmodule

module mult
m : [0.. num_M] init num_M;
[] (m > 0) -> m*lambda_M : (m’ = m - 1);
[] (m < num_M) -> miu : (m’ = num_M);

endmodule

In the PRISM code above, num A and num M represent the number of adders and
multipliers available in the initial state of the configuration. The lambda A and
the lambda M variable represents the associated failure rates of the adders and
multipliers whereas miu represents the repair rate. Each repair transition (scrub)
leads back to the initial state reflecting the scenario that the configuration bit
flips have been repaired. The value of lambda A and lambda M is obtained from
a component characterization library, that will be explained later in the paper.
PRISM then constructs, from this, the corresponding probabilistic model, in this
case a CTMC. The resulting CTMC for this configuration is shown in Fig. 4.
PRISM also computes the set of all states which are reachable from the initial
state and identifies any deadlock states (i.e. reachable states with no outgoing
transitions). PRISM then parses one or more temporal logic properties (e.g. in
CSL) and performs model checking, determining whether the model satisfies
each property.

4.1 Markov Model for Dependability

CTMC models are very commonly used for reliability and dependability mod-
eling. To analyze each configuration, a separate CTMC is built with the help
of the PRISM tool and a wide range of dependability properties are verified.
For the FIR application in Fig. 5, at a minimum, an adder and a multiplier
pair is required for successful operation, hence any state that does not fulfill the
minimum resource availability, is labeled as a failed state. At the end, the state
labeled as all fail represents a state where all the components in the system have
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Fig. 4. Sample Markov model

failed due to soft errors one-by-one. The initial state of the configuration has the
maximum throughput and all the components are functional. The edges between
the states represent transition rates. The assumptions for our model are defined
as follows:

Assumption 1 : The time-to failure for a component due to a configuration bit
flip is exponentially distributed. Exponential distribution is commonly used to
model the reliability of systems where the failure rate is constant. The scrubbing
behavior is assumed to follow Saleh’s probabilistic model [25], e.g. scrubbing
interval is distributed exponentially with a rate 1/µ, where µ represents the
scrub rate.
Assumption 2 : Only one component can fail at a time due to a soft error. This
assumption is made to ensure the complexity in the Markov model is managable.
Assumption 3 : Cold spare components are used to provide redundancy and are
actived only when a same type of component fails. The cold spare components
are only error prone to cosmic radiation when they are active.
Assumption 4 : The reconfiguration and rescheduling times (i.e. the time taken
for the system to reschedule when a component fails and the time taken for
repair via partial reconfiguration) are extremely small compared to the times
between failures and repairs. The time required for rescheduling is at most few
clock cycles and the time required for scrubbing is only a few seconds, which is
significantly smaller than the failure and repair rate.
Assumption 5 : All the states in the CTMC model can be classified into three
types: operational, -where all the component are functional and the system has
the highest throughput; degraded, -where at least one of the components is
faulty; and failed, -where the number of remaining non-faulty components is
not sufficient to perform successful operation and hence has a throughput of 0.
In PRISM, a formula can be used to classify such states as follows:

formula operational = (a = num A) & (m = num M) ;
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4.2 Markov Reward Modeling

Markov chains can be augmented with rewards to specify additional qualita-
tive measures, known as a Markov Reward Model (MRM). In a Markov reward
model, a reward rate function or reward structure r(Xi) where X → R (R is
a set of real numbers) is associated with every state Xi such that r represents
the performance of the system when in state Xi. The transient performability is
defined as the expected value of a random variable defined in terms of a reward
structure :

E[X(t)] =
∑

Xi∈X

PXi
(t) ∗ r(Xi)

A steady-state accumulated mean reward is obtained by integrating this function
from start to an convergent time beyond which rewards are invariant. For per-
formance analysis, we use the throughput metric, hence each state in the MRM
is augmented with associated throughput (in a non-pipelined design, throughput
is the inverse of latency). The throughput reward at each state in the CTMC
is obtained using the forced-directed list scheduling algorithm and all the failed
states are augmented with a throughput reward of zero. In our MRM model, the
area that is required, to implement the design on the FPGA, is assumed to be
invariant between the states for a specific configuration. The reason is, once the
system is implemented on FPGA, the area is fixed and if a fault occurs, then
the system will be rescheduled. So only the control signals will change, not the
components. For overall reward calculation e.g. to evaluate the throughput-area
trade-offs for a configuration, we use the following equation:

Overall reward = (1/A) ∗ E[X]

In the above equation, A represent the area of the design and E[X] represents
the expected throughput. This equation is similar to [20] , however instead of
calculating the reward up to a specified time-step, we use the notion of steady-
state throughput. Such modeling can be considered as a direct optimization of
throughput, area and reliability. Rewards can be weighted based on designer’s
requirements. In the case study, the rewards are set to equal weight.

4.3 Characterization Library

The reliability of a particular device can be calculated by multiplying the esti-
mated nominal SEU failure rate that is expressed in failure-in-time per megabyte
(FIT/Mb) and the number of critical bits. A bit that is important for the func-
tionality of a design can be categorized as a critical bit. For the analysis of
critical bit, we follow the procedure from [7]. The components to be analyzed
are implemented on Virtex-5 xc5vlx50t device. According to Rosetta experiment
[21] and the recent device reliability report [30], a Virtex-5 device has a nominal
SEU failure rate of 165 FIT/Mb.

The above failure rate estimation was done for atmospheric environment. At
places with high elevation above the sea, the SEU rates can be three or four
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Table 1. Characterization library

Component No. of LUTs No. of essential bits MTBF (years)

Wallace tree multiplier 722 133503 9.22
Booth multiplier 650 130781 9.41
Brant-Kung adder 120 29675 41
Kogge-Stone adder 183 41499 30

times higher than at the sea-level. Long-haul aircrafts flying at altitudes near
40,000 ft along flight paths above 60 ◦C latitude experience the greatest neutron
flux of all flights, roughly 500 times that of a ground-based observer in New
York City [13]. However, results from the Rosetta experiment [21] for different
altitude and latitude shows a worst-case derating factor of 561.70, and hence for
commercial avionics applications the worst-case derating factor should be used.

In order to build a characterization library for the first-order estimate of soft
error effects, we use the bitgen feature of Xilinx ISE tool to identify the essential
bits, also known as potentially critical bits. It is well known that the number
of critical bits is less than the number of potentially critical bits. More accurate
SEU susceptibility analysis can be performed using the fault injection techniques
[18,22], however, for first-order worst-case estimation, it is a valid assumption
that all the essential bits are considered as critical bits. This is important to
mention that we use the characterization library to obtain the failure rate of
the components for the CTMC model and the methodology is generic enough to
be used with a different characterization library with more precise and accurate
data, without any major changes.

Table 1 presents the first-order worst-case estimate of component failures
due to soft errors. We characterize different adder and multiplier components,
namely 32-bit Brent-kung adder, 32-bit Kogge-stone adder, 32-bit Wallace-tree
multiplier and 32-bit Booth multiplier. The Xilinx Synthesis Technology (XST)
tool is used to synthesize the components from their HDL codes and the number
of required LUTs to implement them is also obtained. We observe that a 32-bit
Wallace-tree multiplier has about 0.134 million bits that are sensitive to SEUs.
So this multiplier has a worst-case MTBF of 9.22 years for avionic applications.

5 Case Study

To illustrate the applicability of the proposed methodology for early design deci-
sion, this section presents a case study from a high-level synthesis benchmark.
Figure 5 shows the CDFG for a 16-point FIR Filter [16]. For the experiments,
we consider the 32-bit Kogge-stone adders and 32-bit Wallace tree multipliers
as available components from the characterization library. To achieve a schedule
with minimum number of control steps, the minimum allocation is two adders
and two multipliers for the FIR filter application. At a minimum a pair of one
adder and one multiplier is required for successful operation. The first part of the
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Fig. 5. FIR filter

case study presents the dependability analysis on different configurations. The
later part of the case study focuses on the performance-area trade-off analysis
using overall reward calculation.

Table 2 shows the statistics and model construction time in PRISM for four
different configurations. The first configuration consists of two adders and two
multipliers with no redundancy. The second and third configuration consists of
one spare multiplier and one spare adder respectively used as redundant compo-
nents (coldspare). Configuration 4 is equipped with full component-level redun-
dancy, with a spare of each type of components. All the four configurations have
approximately the same model generation time around 0.002 s. Configuration 4
has maximum number of states and and maximum number of transitions in the
generated Markov model.

Probabilistic model checking allows us to reason about the probability of
occurrence of an event or of reaching a state within a specific time period, or
at any point of time in the lifetime of the system. Such measures can be for-
malized using CSL as P = ? (F[t1, t2] “operational”), which must be read
as follows: “the probability that the system is operational within the specified

Table 2. Model construction statistics

Configuration No. of states No. of transitions Time (s)

2A 2M 9 24 0.002
2A 3M 12 34 0.002
3A 2M 12 34 0.002
3A 3M 16 48 0.002
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Table 3. Configurations vs classes of states

Configurations Operational (days) Degraded (days) Failed (days)

2A 2M 3212.16 419.81 18.02
2A 3M 3212.16 434.64 3.20
3A 2M 3212.16 421.45 16.39
3A 3M 3212.16 436.28 1.55

time-bound where [t1, t2] ∈ R”. In Table 3, we analyze the number of days the
design spends in different classes of states for a mission time of 10 years with a
scrub rate of 6 months. The first column of the table shows the different configu-
rations for evaluation. The second, third and fourth column presents the number
of days the design spends in different classes of states. All the configurations
spend approximately similar number of days in operational state (rounded to 2
decimal points). Configuration 1 spends around 18 days in failed state. Inter-
estingly, we observe that adding an extra adder as spare does not help much
whereas adding an extra multiplier as spare significantly reduces the number
days spent in failed state. In configuration 4, the added spares for both adder
and multiplier provide the best result in terms of dependability. This is obvious
but will cost more area on the FPGA. Configuration 1 spends the least number
of days in degraded state and configuration 4 spends the highest number of days
in degraded state. For many safety-critical applications, low performance for a
period of time is acceptable. For such systems the number of days spent in failed
state is a major concern and hence, configuration 4 and configuration 2 are the
two best candidates.

Choice of scrub rate affects the dependability of the system. Table 4 shows
the effects of different scrub rates on configuration 2 for a mission time of 10
years. From the experimental results, we observe that the increase in the scrub
rate increases the number of days spent in failed and degraded states. Thus, it
decreases the number of days spent in operational state. For a scrub rate of 10
months, the system spends around 10 days in failed state whereas for a scrub
rate of 4 months, the design spends only around 1 days in failed state. For a
scrub rate of 1 month, the system spend only around 1.5 h in failed state. Such
an analysis can help designers to choose an effective scrub rate best suited for
the application.

In Fig. 6 and Table 5, we compare the four available configurations with
respect to different scrub rates to calculate their failure probability for the same
mission time. The experimental results show that for configuration 1, the fail-
ure probability varies from 0.020 to 0.145. Configuration 2 has a lower failure
probability than configuration 3 for all the scrub rates. The failure probability of
configuration 4 for all different scrub rates shows the best result with associated
extra area overhead.

Steady state analysis of a design is useful to evaluate its dependability in the
long-run. The steady-state properties can be formalized using CSL as
S = ? [fail], which must be read as follows: “the long-run non-availability
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Fig. 6. Failure probability vs scrub rate (days)

Table 4. Scrub rate vs Classes of states

Scrub rate Operational Degraded Failed
(months) (days) (days) (days)

1 3567.06 82.87 0.06
4 3343.21 305.49 1.30
7 3151.41 494.09 4.49
10 2985.99 654.35 9.65

Table 5. Scrub rate vs configurations

Scrub rate (Months) 2A 2M 2A 3M 3A 2M 3A 3M

1 0.020 0.002 0.019 3.36E-4
4 0.071 0.011 0.066 0.004
7 0.111 0.022 0.104 0.011
10 0.145 0.035 0.135 0.020

of the system”, i.e. the steady-state probability that the system is in failed state.
The results of steady-state analysis is presented in Table 6 for a scrub rate of 4
months. From the results, we observe that configuration 2 is really an attractive
alternative to configuration 4. On the other hand, configuration 1 and configu-
ration 3 offer similar results (rounded to 2 decimal points) over the long-run.

For throughput-area trade-off analysis, Table 7 shows the long-run overall
reward calculation for the configurations with a scrub rate of 4 months. The
rewards are setup so that the area and expected throughput have equal weights.
For every configuration, the maximum throughput is used to normalize the
throughput for other states in the Markov reward model. Similarly, the max-
imum area is used to normalize the other area values among different configu-
rations. The normalized long-run expected throughput for each configuration is
shown in column 2. Column 3 shows the area of each configuration and their nor-
malized value is shown in column 4. Column 5 shows the overall area-throughput
reward for each configuration. The reward for each configuration is calculated
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Table 6. Steady state analysis

Class 2A 2M 2A 3M 3A 2M 3A 3M

Fail 0.002 3.86E-4 0.002 1.58E-4
Degraded 0.084 0.086 0.084 0.086
Operational 0.913 0.913 0.913 0.913

Table 7. Overall reward calculation

Configurations Expected Area Normalized Overall
throughput area reward

2A 2M 0.983 1710 0.667 1.46
2A 3M 0.991 2432 0.948 1.04
3A 2M 0.990 1834 0.715 1.39
3A 3M 0.999 2565 1.000 0.99

by multiplying the value of column 2 with the reciprocal of the normalized area.
Based on the equal reward weighting, configuration 1, which has no redundancy
(spare components), shows the best throughput-area reward. This indicates that
the extra reliability provided by the redundancy is not always useful to suppress
the extra area overhead. However, rescheduling with scrubbing is good enough to
serve as a fault recovery and repair mechanism in such cases. Another important
observation is that adding a spare adder significantly improves the throughput-
area reward, much more than adding a spare multiplier. It clearly show, how the
inclusion of throughput-area metrics can influence design decisions toward solu-
tions that differs from those resulting from an analysis based on a dependability
metric alone, as in Table 3. Such an analysis, using the proposed methodology,
can be very useful at early design stages for designers of safety-critical applica-
tions concerned with dependability, performance and area constraints.

6 Conclusion

This paper illustrated how probabilistic model checking, a formal verification
technique which has already been applied to a wide range of domains, can be
used to analyze designs at early stage for avionic applications. The design options
are modeled using a Markov reward model that captures the possible failures,
recoveries and repairs possible in high-altitude radiation environments. After-
wards, a wide range of properties are verified to evaluate the design options, in
terms of throughput, area and dependability. Such analysis is useful to reduce
the overall design cost and effort. A FIR filter case study demonstrated how the
proposed methodology can be applied to drive the design process. Future works
include automation of the process to generate the PRISM code for a given con-
figuration and to analyze designs in the presence of other kinds of faults such as
Single-Event Functional Interrupts (SEFI).
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