
An Automated SAT Encoding-Verification
Approach for Efficient Model Checking

Khaza Anuarul Hoque, O. Ait Mohamed
ECE Dept, Concordia Univ., Canada
{k hoque,ait}@ece.concordia.ca

Sa’ed Abed
CE Dept., Hashemite Univ., Jordan

sabed@hu.edu.jo

Mounir Boukadoum
CS Dept., UQAM, Canada

boukadoum.mounir@uqam.ca

Abstract— In this paper, we introduce an automated
conversion-verification methodology to convert a Directed For-
mula (DF) into a Conjunctive Normal Form (CNF) formula that
can be fed to a SAT solver. In addition, the formal verification of
this conversion is conducted within the HOL theorem prover.
Finally, we conduct experimental results with different-sized
formulas to show the effectiveness of our methodology.

I. INTRODUCTION

Many efforts are spent today on developing Satisfiability
Checking tools (SAT) to perform model checking as they are
less sensitive to the problem sizes and the state explosion
problem of classical Binary Decision Diagram (BDD)-based
model checkers. As a result, researchers have developed
several routines for performing Bounded Model Checking
(BMC) [1][2] using SAT. The common theme is to convert
the problem of interest into a SAT problem, by devising the
appropriate propositional Boolean formula, and to utilize other
non-canonical representations of state sets. However, they all
exploit the known ability of SAT solvers to find a single
satisfying solution when it exists.

The Multiway Decision Graph (MDG) [3] is an extension
of the Binary Decision Diagram (BDD) in the sense that
it represents and manipulates a subset of first-order logic
formulae suitable for large datapath circuits. With MDGs, a
data value is represented by a single variable of an abstract
type and data operations are represented in terms of an
uninterpreted functions.

In a previous work [4], a methodology integrating SAT and
the MDG model checker tool, was presented by the authors
with preliminary experimental results. The basic idea was to
use the SAT solver as a reduction engine within the MDG
model checker tool [3]. As a continuation of that work, this
paper presents a completely automated conversion-verification
approach for the conversion of MDG Direct Formulas (DF) to
CNF (which will be fed to the SAT solver). Also, we provide
the correctness of this conversion. The Tseitin approach is
used [5] for the conversion part while only introducing ”fresh
variables” for AND gates. The obtained CNF formula is
formally compared to the original DF using the HOL theorem
prover. This will enhance confidence in the whole verification
process.

II. RELATED WORKS

Their exist two possible ways to eliminate Equality with Un-
interpreted Functions(EUFs), while enforcing their property of

functional consistency: Ackermann constraints [6] and nested
If-Then-Else operators (ITE) [7]. In [6], the UF was replaced
with a new term variables and the next application of UF with
respect to the previous one was enforced by extending the re-
sulting formula with constraints. Such constraints were added
for each pair of applications of that UF. Bryant presented an
approach to eliminate the applications of UF with nested ITEs
in [7]. In the nested ITE scheme, the first application of the
UF is still replaced by a new term variable. However, the
subsequent applications are eliminated by introducing nested
ITEs with new term variables while preserving functional
consistency. We prefer the nested ITE scheme which directly
captures the functional consistency and readily exploits the
maximal diversity property while Ackermann’s can not[7].

Lack of a fast and efficient CNF generation algorithm has al-
ways been a bottleneck for CNF based SAT solvers and, hence,
researchers paid much attention to this point [8]. Moreover,
most of the CNF generation algorithms used in practice were
minor variations of Tseitin’s linear time algorithm [5]. Another
CNF conversion algorithm came from Velve [9], showing an
efficient CNF generation technique with identifying gates with
fan-out count of 1 and merging them with their fan-out gate to
generate a single set of equivalent CNF clauses. Nested ITE
chains, where each ITE is used only as else argument of the
next ITE, are similarly merged and represented with a single
set of clauses without introducing intermediate variables. Such
approach is good for pipelined machine verification problems,
identifying certain patterns arising in formulas.

Very recently, an algorithm was proposed [10] for convert-
ing Negation, ITE, Conjunction and Equivalence (NICE dags)
to CNF. A new data structure called NICE dag subsumes
AND-Inverter Graphs (AIG). In all, the approaches described
above use an intermediate representation or data structure
for the boolean formula (either RBC, AIGER or NICE dag).
The MDG Directed Formula is itself a DAG, so intermediate
DAG representation is not required before conversion. The
most interesting thing we observed is that, in most of the
papers, a ”paper and pencil” sketch was given as proof of
their conversion approach. This also motivated us to build an
automated tool for the verification of conversion.

In [4], a preliminary approach to integrate SAT with the
MDG model checker tool was presented with an overview of
the algorithm for CNF conversion. But the complete algorithm
for DF to CNF encoding and implementation details were

22nd International Conference on Microelectronics (ICM 2010)

978-1-4244-5816-5/09/$26.00 ©2009 IEEE

missing in that work. In this paper, we bring two main
contributions: We have automated the complete algorithm to
convert MDG DF to CNF using the Tseitin algorithm [5]
while introducing ”fresh variables” only for AND gates. The
native structure of MDG direct formula made our life easy
for the conversion. Also unlike other researchers, for our
methodology, we present an automated process to perform the
formal verification of the implementation of CNF conversion
algorithm using the HOL theorem prover.

III. PRELIMINARIES

Multiway Decision Graph: MDG is a graph representation
of a class of quantifier-free and negation-free first-order many
sorted formulae. It subsumes the class of Bryant’s (ROBDDs)
[11] while accommodating abstract data and Uninterpreted
Function symbols. MDG can be seen as a Directed Acyclic
Graph (DAG) with one root, whose leaves are labeled by
formulae of the logic True (T) [3], such that: (1) Every leaf
node is labeled by the formula T, except if the graph G has
a single node, which may be labeled T or F. (2) The internal
nodes are labeled by terms, and the edges issuing from an
internal node v are labeled by first-order terms of the same
sort as the label of v.

Terms are made out of sorts, constants, variables, and
function symbols. Two kinds of sorts are distinguished: con-
crete and abstract. A concrete sort is equipped with finite
enumerations, lists of individual constants. Concrete sorts are
used to represent control signals. An abstract sort has no
enumeration available. A signal of an abstract sort represents a
data signal. MDGs represent and manipulate a certain subset of
first order formulae, which we call Directed Formulae (DFs).
DFs are used for two purposes: to represent sets (viz. sets of
states as well as sets of input vectors and output vectors) and
to represent relations (viz. the transition and output relations).
Boolean Satisfiability: The Boolean Satisfiability (SAT) prob-
lem is a well-known constraint satisfaction problem with
many applications in computer aided design, such as test
generation, logic verification and timing analysis. Given a
Boolean formula, the objective is to either find an assignment
of 0-1 values to the variables so that the formula evaluates to
true, or establish that such an assignment does not exist. The
Boolean formula is typically expressed in Conjunctive Normal
Form (CNF), also called product-of-sums form. Each sum term
(clause) in the CNF is a sum of single literals, where a literal
is a variable or its negation.

In practice, most of the current SAT solvers are based on
the Davis-Putnam algorithm [12]. The basic algorithm begins
from an empty assignment, and proceeds by assigning a 0 or
1 value to one free variable at a time. After each assignment,
the algorithm determines the direct and transitive implications
of that assignment on other variables, typically called Boolean
Constraint Propagation (BCP). If no contradiction is detected
during the implication procedure, the algorithm picks the
next free variable, and repeats the procedure. Otherwise, the
algorithm attempts a new partial assignment by complement-
ing the most recently assigned variable for which only one

value has been tried so far. This step is called backtracking.
The algorithm terminates either when all clauses have been
satisfied and a solution has been found, or when all possible
assignments have been exhausted. The algorithm is complete
in that it will find a solution if it exists.
HOL Theorem Prover: The HOL system is an LCF (Logic
of Computable Functions) style proof system. Originally in-
tended for hardware verification, HOL uses higher-order logic
to model and verify a variety of applications in different
areas; serving as a general purpose proof system. We cite for
example: reasoning about security, verification of fault-tolerant
computers, compiler verification, program refinement calculus,
software verification, modeling, and automation theory.

HOL provides a wide range of proof commands, rewrit-
ing tools and decision procedures. The system is user pro-
grammable which allows proof tools to be developed for
specific applications [13].The basic interface to the system
is a Standard Meta Language (SML) interpreter. The HOL
system supports two main different proof methods: forward
and backward proofs in a natural-deduction style calculus.
Normal Forms:

Definition 1: A formula is in Disjunctive Normal Form
(DNF) if it is a disjunction of minterms (conjunctions of
literals). In other words, a DNF formula is a sum of products
and looks like:
(x11 ∧ x12 ∧ ∧ x1n1) ∨ (x21 ∧ ... ∧ x2n2) ∨ ∨ (xm1 ∧

.... ∧ xmnm)
where each xij is a literal. Literal is a variable or it’s negation.
In short: ∨

i

∧
j
xij

Definition 2: A formula is in Conjunctive Normal Form
(CNF) if it is a conjunction of maxterms (disjunctions of
literals). The maxterms are often referred to as clauses in this
context. So, a formula in CNF looks like:∧

i

∨
j
xij

IV. CONVERSION-VERIFICATION METHODOLOGY

Figure 1 shows our conversion-verification methodology.
The conversion part contains a preprocessor and a CNF con-
verter. The verification engine contains a goal generator and
a theorem prover. We start from the DF. After preprocessing,
the formula goes through the CNF converter. The output CNF
formula is then fed to the verification engine for automated
verification of the conversion.

A. Conversion Methodology

Algorithm 1 CreateCNFFormula(DF)
1: Formula = MDG Direct Formula;
2: Replace UF’s by term variables;
3: Infer constraints between predicates;
4: DFbool = Transform predicates to boolean variables;
5: for each DNFi in DFbool do
6: CNFDNFi

= ConvertoCNF(DNFi);
7: end for
8: CNFcomplete = Conjunct all CNFDNFi

;
9: ReturnCNFcomplete;

CNF Verification Engine

CNF Converter

Preprocessor

(EUF to Boolean

Encoder)

CNF

Converter

HOL Theorem Prover

Goal

Generator

MDG-DF

Mapping between

Tseitin Variable &

Logic gates

Equivalent

CNF

formula

Success

Fig. 1. Overview of the DF to CNF conversion-verification methodology

Before applying the conversion algorithm, the preprocessor
inside the conversion engine eliminates the EUF applications
and introduces boolean encoding. The CNF converter does
the conversion for the DF and ends up with generating the
essential mapping for the goal generator in verification engine.
EUF Elimination: The preprocessing part of our methodology
eliminates the UF by using nested ITEs [7]. For example, if
g(x1, y1), g(x2, y2) and g(x3, y3) are three applications of UF
g(), then the first application will be eliminated by a new term
variable c1. The second one will be replaced by ITE((x2 =
x1) ∧ (y2 = y1), c1, c2), where c2 is a new term variable.
The third one will be replaced by ITE((x3 = x1) ∧ (y3 =
y1), c1, ITE((x3 = x2) ∧ (y3 = y2), c2, c3)), where c3 is a
new term variable. For ITE terms, we define encITE as:

encTr(ITE(G,T1, T2)) = encDF (G) ∧ encTr(T1)∨
¬encDF (G) ∧ encTr(T2)

where encTr(T1), encTr(T2) represent boolean encoded
terms and encDF (G) represents propositional formula, an
encoded representation of a formula G. For some cases, we
modified Bryant’s encoding slightly for the MDG DF case.
For example if the formula inside ITE contains a comparison
between two different constants (such cases sometime occurs
in MDG DF), then it’s always false. So we define the encoding
for such cases as :

encTr(ITE(Gconst1=const2 , T1, T2)) = encTr(T2)

At the end of the preprocessing stage the Boolean formula
is fed to the CNF converter.
Linear conversion to CNF: Algorithm 1 shows the complete
algorithm for the encoding and conversion. An MDG Direct
Formula (DF) is the conjunction of several individual DF,
where each of these DF is in DNF format:

DFcomplete =
∧

DFi; (1)

Fig. 2. Tesitin encoding to convert a propositional formula to CNF linearly

In this equation, i is the number of state variables and DFi

is a DNF. So, for our case, it is enough to get the equivalent
CNF for each DFi and conjunct them because conjunction of
CNF is also a CNF.

DFCNF =
∧

CNFDFi ; (2)

Linear algorithm for computing CNF (DF) is well known
as Tseitin [5]. In Tseitin, a new variables for every logical gate
is introduced. Thus variables impose a constraint that preserve
the function of that gate. Given a DNF formula

(a ∧ b) ∨ (c ∧ d) (3)

With Tseitin encoding, a new variable for each subexpression
is introduced. In this example, let us assign the variable x
to the first ’and’ gate (representing the subexpression a ∧ b),
y for the second ’and’ gate (representing the subexpression
c∧d). We also introduce a new variable z to represent the top
most operator. For DF, the top most operator which is always
an ’OR’ gate connected with several ’AND’ gates. Figure 2
illustrates the parse tree of our formula. We need to satisfy
the two equivalences:

x ⇐⇒ a ∧ b
y ⇐⇒ c ∧ d

(4)

The overall CNF formula is the conjunction of the two
equivalences written in CNF as:

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x)
∧

(¬y ∨ c) ∧ (¬y ∨ d) ∧ (¬c ∨ ¬d ∨ y)

and the unit clause (z) which represents the top most operator.
Instead of (z) we prefer to use (x ∨ y) which represents
the same. The converter keeps track by mapping the Tseitin
variable for each logic gates. In the example, Equation (4)
represents this mapping. Such mapping will be fed to the goal
generator in the next step for verification.

B. Verification of Conversion

The verification part of the methodology contains a goal
generator and HOL Theorem prover. The goal generator
generates the goal to be proved by the HOL theorem prover.
At the end, HOL provides a decision based on the inputs.
Goal Generator: The goal generator takes the CNF formula,
Tseitin variable for each logic gate mapping generated by the
converter and the Boolean encoded DF as input. Given the
Tseitin variable for each logic gate mapping, the goal generator

Fig. 3. DF size vs. CNF conversion time

generates the assumptions. The assumptions for the previous
conversion example can be written as:

x = a ∧ b
y = c ∧ d

(5)

At the end, the goal generator ends up with generating a
complete goal to prove in HOL:

Assumptions → EncodedDF ⇐⇒ CNFFormula

Call to the HOL theorem prover: As we mentioned earlier,
we used HOL theorem prover to prove the goal. After gen-
erating the goal, the goal generator places a call to the HOL
theorem prover. Given the input goal, the proof is conducted
by applying rewriting rules. Note that the goal is generated in
such a way that only one Tactic is enough to decide the goal.

V. APPLICATION AND RESULTS

We implemented our methodology in C++ and ran it on
several different sized DFs, each of them containing different
number of clauses and variables. All the experiments were
run under Fedora Core 9 on an Intel Xeon 3.4 GHz processor
with 3 GB of RAM. Table I summarizes the conversion
runtime and the verification. Our program produces a ’zero’
delay for the DF with less than 100 clauses. We increased
both the number of clauses and the number of variables with
some bigger sized DFs. Table I shows a very fast response
time of 0.1 second even with large DF with 1000 clauses of
168 variables. Figure 3 shows a nearly linear behavior for
our implementation. The slight deviations from linearity are
caused by the interruption internal processes of the operating
system.

On the other hand, the verification time in HOL increases
with DF size. HOL takes a few seconds for the verification of
smaller sized DFs, but suffered for bigger sized DFs while
taking a longer time to prove. As we mentioned earlier,
the way we constructed the goal requires only one Tactic
(DECIDE TAC) for proving the goal, which is a positive
side for the methodology. For a DF with 100 clauses, our
conversion produced a zero delay, where as HOL took about
4.010 seconds to verify the conversion. HOL took about
14.901 and 28.021 seconds to prove the conversion of DFs
with sizes 300 and 500, respectively, which was more than the
expected time. The verification time increased sharply for the
DF with 1000 clauses of 168 variables. But for all cases, HOL

TABLE I
CNF CONVERSION TIME

DF size No. variables Conversion time Verific. time
100 38 0.00 4.010
200 58 0.01 8.231
300 78 0.02 14.908
400 98 0.03 19.042
500 118 0.04 28.021
700 148 0.06 53.098

1000 168 0.10 93.118

successfully finished proving the verification of the conversion.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and implemented a conversion-
verification approach for CNF conversion of MDG DF with
conversion verification. We have also presented some ex-
perimental results to show the performance of our method-
ology. Our automated verification technique for the CNF
conversion is a new contribution to this field of research.
Researchers working with CNF conversions inspired by the
Tseitin algorithm, or slight modification/enhancement of it,
can easily apply this automated technique to formally verify
their conversion. Our future work will apply this conversion-
verification technique with algorithms other than Tseitin. The
experimental results showed that with the increasing size of
DFs, HOL suffers to prove the goal with larger runtime. This
gives us more area to improve the performance.

REFERENCES

[1] M. Ganai and A. Gupta, “Completeness in SMT-based BMC for
software programs,” in DATE, 2008, pp. 831–836.

[2] O. Strichman, “Pruning techniques for the sat-based bounded model
checking problem,” in CHARME, 2001, pp. 58–70.

[3] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Multiway
decision graphs for automated hardware verification,” in Formal Methods
in System Design, vol. 10, no. 1, February 1997, pp. 7–46.

[4] S. Abed, O. A. Mohamed, Z. Yang, and G. A. Sammane, “Integrating
SAT with Multiway Decision Graphs for Efficient Model Checking,” in
Proc. of IEEE ICM’07. Egypt: IEEE Press, 2007, pp. 129–132.

[5] G. Tseitin, “On the complexity ofderivation in propositional calculus,”
Studies in Constrained Mathematics and Mathematical Logic, 1968.

[6] G. Ackermann, “Solvable cases of the decission problem,” North-
Holand, Amsterdam, 1954.

[7] S. G. R. Bryant and M. Velev, “Processor verification using efficient
reductions of the logic of uninterpreted functions to propositional logic,”
ACM Trans. Comput. Log., vol. 2, no. 1, pp. 93–134, 2001.

[8] R. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, and
B. Brady, “An abstraction-based decision procedure for bit-vector arith-
metic,” STTT, vol. 11, no. 2, pp. 95–104, 2009.

[9] M. Velev, “Efficient translation of boolean formulas to CNF in formal
verification of microprocessors.” ASP-DAC, January 2004, pp. 310–
315.

[10] B. Chambers, P. Manolios, and D. Vroon, “Faster sat solving with better
cnf generation.” DATE, 2009.

[11] R. Bryant, “Graph-based Algorithms for Boolean Function Manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
August 1986.

[12] M. Davis and H. Putnam, “A Computing Procedure for Quantification
Theory,” J. ACM, vol. 7, no. 3, pp. 201–215, 1960.

[13] M. Gordon and T. Melham, Eds., Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. NY, USA: Cambridge
University Press, 1993.

