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Abstract—Systolic array-based deep neural network (DNN)
accelerators have recently gained prominence for their low
computational cost. However, their high energy consumption
poses a bottleneck to their deployment in energy-constrained
devices. To address this problem, approximate computing can be
employed at the cost of some tolerable accuracy loss. However,
such small accuracy variations may increase the sensitivity of
DNNs towards undesired subtle disturbances, such as permanent
faults. The impact of permanent faults in accurate DNNs has
been thoroughly investigated in the literature. Conversely, the
impact of permanent faults in approximate DNN accelerators
(AxDNNs) is yet under-explored. The impact of such faults
may vary with the fault bit positions, activation functions and
approximation errors in AxDNN layers. Such dynamacity poses
a considerable challenge to exploring the trade-off between their
energy efficiency and fault resilience in AxDNNs. Towards this, we
present an extensive layer-wise and bit-wise fault resilience and
energy analysis of different AxDNNs, using the state-of-the-art
Evoapprox8b signed multipliers. In particular, we vary the
stuck-at-0, stuck-at-1 fault-bit positions, and activation functions
to study their impact using the most widely used MNIST and
Fashion-MNIST datasets. Our quantitative analysis shows that
the permanent faults exacerbate the accuracy loss in AxDNNs
when compared to the accurate DNN accelerators. For instance,
a permanent fault in AxDNNs can lead up to 66% accuracy loss,
whereas the same faulty bit can lead to only 9% accuracy loss in
an accurate DNN accelerator. Our results demonstrate that the
fault resilience in AxDNNs is orthogonal to the energy efficiency.

Index Terms—Deep Neural Networks, Approximate Computing,
Fault Resilience, Energy Consumption.

I. INTRODUCTION

Deep Neural Networks (DNNs) are widely popular in
big-data analytic applications such as, smart healthcare and
telematics. Their anticipated adoption facilitates non-erroneous
data-intensive classification, segmentation and translation.
However, high precision often compels DNNs to use huge
parameters space [1] with massive matrix multiplications.
Such computational intensiveness limits their deployment on
energy-constrained devices. For example, heavy edge analytics
in battery-driven self-driving cars, where safety and energy
are critical considerations, can lead to their unexpected energy
outage. For enhancing the energy efficiency of such devices,
many energy-aware systolic array-based DNN accelerators have
been recently developed [2] but their large size requirement
for fast data processing poses meager energy gains in
energy-constrained devices [3]. This problem can be addressed

with approximate computing that trades the accuracy of an
application-specific system, by exploiting its intrinsic error
resilience, for energy savings [4]. It incorporates loop skipping
and sampling rate reduction at the software level, and adopts
inexact arithmetic units (e.g., multipliers and adders with
truncated carry chains [5] or bit-wise structural modifications
[6]) and memory skipping [7] at the hardware level. Since, these
practices are error inducing in nature [8]; they are deemed to
be more sensitive towards undesired subtle disturbances such
as, permanent (hard errors) and transient faults (soft errors) [9].

A fault, along with approximation error, in any region
of systolic array-based approximate DNN accelerators [5]
(AxDNNs) may propagate unevenly to multiple DNN layers.
For example, an un-masked fault in the most significant bit
(MSB), of their approximate multiplier’s output, can cause
deviation from the expected output of all AxDNN layers due to
reusable nature of systolic arrays. However, the impact of a fault
may vary according to the activation functions, fault type and
bit position, and approximation error resilience of each layer.
Since, the permanent faults affect the performance of accurate
DNNs more significantly than occasional transient faults [10].
Their impact may be more prominent in AxDNNs due to their
inexact nature. Recently, Kundu and Zhang et al. explored
the impact of permanent faults on multiple locations of the
accurate DNNs [10] [11]. Hong et al. elucidated their limits for
different bit-wise parameter corruptions [12]. Li et al. exploited
the fault tolerance of the accurate DNNs on the basis of
different data types and number of layers [13]. In other words,
the state-of-the-art research is focused on the fault resilience
analysis of accurate DNN accelerators. However, an extensive
fault resilience analysis of AxDNNs and its relationship with
energy efficiency is yet under-explored.

Towards this, we present an extensive permanent fault
resilience and energy analysis of AxDNNs. Since, the
multipliers consume more energy than other arithmetic
units (e.g., adders) in DNNs [8]. Therefore, we use their
approximate counterparts with faults injection in their output
bits. In particular, we benchmark the impact of stuck-at-0
and stuck-at-1 faults on approximate feed-forward neural
networks (FFNNs), using the state-of-the-art Evoapprox8b
signed multipliers [14], by varying the fault-bit position (least
significant bit ‘LSB’ to MSB) and incorporating different



activation functions (e.g., tanh, sigmoid) in their hidden layers
to foster further progress in this field. We explore the layer-wise
fault resilience of AxDNNs, using the MNIST [15] and
Fashion MNIST [16] datasets to demonstrate the contribution
of each layer towards the accuracy loss in the presence of
approximation errors. Our quantitative fault resilience analysis
shows that the faults exacerbates the accuracy loss with
approximate computing in AxDNNs. For instance, a permanent
fault in AxDNNs can lead up to 66% accuracy loss, whereas
the same fault in the same position can lead to only 9%
accuracy loss in an accurate DNN accelerator. Our results
demonstrate that the fault resilience is orthogonal to the energy
efficiency in of AxDNNs and varies from output to input layer
in accordance with the type of activation functions and the
amount of approximation error. The higher the approximation
error is, the higher is the faults tendency to disrupt the output
quality.

The remainder of this paper is structured as follows: Section
II provides the preliminary information about the fault resilience
and state-of-the-art approximate multipliers. Section III presents
our evaluation methodology. Section IV discusses the results
of fault resilience, and energy analysis of AxDNNs. Finally,
Section V concludes the paper.

II. BACKGROUND

This section provides a brief overview of the fault
resilience and state-of-the-art approximate multipliers for better
understanding of the paper.

A. Fault Resilience

Fault Resilience is an important characteristic of DNNs that
can be defined as a function of accuracy loss. The DNN
accelerators inherit such resilience for a considerable range
of fault-bits to ensure reliable computation [10]. However,
it may become insignificant, when faults incur performance
degradation by influencing the MSBs, especially, such that they
remain unmasked in the resulting outputs. In other words, the
bits may be stuck-at-0 or stuck-at-1 due to some hardware
defects; however, they propagate to the output DNN layer only
when their presence changes the value of the corresponding
byte. For example, the stuck-at-1 fault at first bit position in
the 4-bit output ‘0001’ of a multiplier may remain masked (no
effect) but at fourth bit position, it may lead to difference of
8 digits (in decimal) i.e., ‘1001’. Such output deviations may
propagate as faults through multiple DNN layers and affect
the application layer to a larger extent [11]. It is important to
note that unlike approximation errors, the faults are unexpected
changes in the bits. In this paper, the stuck-at-0 and stuck-at-1
faults are used for fault resilience analysis of DNN accelerators.

B. Approximate Multipliers

Approximate multipliers relax the abstraction of near-perfect
accuracy in digital applications [17] by simplifying the partial
product matrix [18], incorporating approximate counters or
compressors in the partial product tree [5] and truncating
the carry propagation chain in partial products generation

[19] for low latency and power or energy consumption.
However, the later approach often leads to high (undesired)
truncation error and hence, requires error correction units [20].
Recently, Mrazek et al. developed a library of approximate
multipliers, known as ‘Evoapprox8b’ [14], which poses
resource efficiency with tolerable accuracy loss in the most error
resilient applications. It uses multi-objective Cartesian genetic
programming for generating a set of ASIC-oriented optimal
approximate multiplication circuits [19]. It also contains some
optimized accurate multipliers. In this paper, we used both
accurate and approximate Evoapprox8b [14] signed multipliers
for comparative fault resilience and energy analysis of accurate
DNNs and AxDNNs.

III. EVALUATION METHODOLOGY

The performance of DNNs is mainly determined by their
design parameters e.g., number of hidden layers, neurons, etc.
Therefore, an optimal parameters configuration is first searched
by trial and error method for the accurate DNN training
and inference prior to 8-bit signed integer quantization. Then,
the accurate multipliers are replaced with their approximate
counterparts, using an open-source approximation library (e.g.,
Evoapprox8b [14]), for approximation error resilience analysis.
Next, the faults are injected in their different output bit positions
(i.e, from LSB to MSB) and layers of AxDNNs. This fault
injection is performed for different activation functions in the
hidden layers to explore the dependency of the fault resilience
on the activation functions. Lastly, the fault-energy trade-offs
are analyzed by finding the energy consumption of AxDNNs,
with systolic array-based hardware implementation, using a
logic synthesis tool ‘Synopsys Design Compiler’. This trade-off
analysis results in multiple energy-aware and, fault-resilient
and non-resilient knobs. Fig. 1 presents an overview of our
evaluation methodology.
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Figure 1. Evaluation Methodology for Analyzing Fault-Energy Trade-offs in
Systolic Array-based DNN Architectures

IV. RESULTS AND DISCUSSIONS

This section discusses the experimental setup and results for
approximation error and fault resilience, and energy analysis
of accurate DNNs and AxDNNs using the Evoapprox8b [14]
library. In this paper, the accurate multiplier refers to KV8 and
approximate multipliers refers to KVA, KVB, KX2, KRC, KR6,
L2H, L2D, L1G, KTY and KVL signed multipliers obtained
from the Evoapprox8b library.



A. Experimental Setup

1) Datasets: In this paper, the fault resilience of accurate
DNNs and AxDNNs is analyzed using two widely used datasets
namely, the MNIST [15] and Fashion-MNIST [16] datasets.
These datasets contain 60,000 training and 10,000 test images.
The MNIST dataset represents the labelled handwritten digits
ranging from 0 to 9, whereas the Fashion MNIST is associated
with labels from 10 different classes such as boots, shirts, etc.

2) Model Configurations: In this paper, the DNNs
with design configurations 784-256-256-256-10 and
784-512-512-512-10 are used for the MNIST [15] and
Fashion MNIST [16] classification, respectively. For each of
these configurations, two architectures with different activation
functions are evaluated, denoted as Arch. 1 and Arch. 2. The
input and hidden layers of Arch. 1 and Arch. 2 incorporate
tanh and sigmoid as activation functions, respectively. Their
output layer contains softmax as the activation function.

B. Fault Resilience Analysis

In this section, the fault resilience of accurate DNN and
AxDNN architectures is extensively studied with different fault
configurations (fault types and bit positions).

1) Approximation Error vs. Fault Resilience: In Fig. 2, the
mean average error (MAE) comparison of different multipliers
shows that the L2D, KTY, L1G and KR3 approximate
multipliers have high approximation error and hence, pose low
classification accuracy in AxDNNs (see Fig. 2 (b)). The faults
along-with such inexact nature of AxDNNs may render an
application to perform below its error tolerance range. For
example, the MNIST [15] classification with stuck-at-0 fault
in the seventh bit of the accurate multiplier in Arch 1. (fault
in layer 1 only) results in 0.62% accuracy loss in comparison
to the corresponding non-faulty accurate DNN (see label A in
Fig. 2 (b) and label B in Fig. 3). However, the same fault
configuration causes 34.49% accuracy loss in the KTY (having
MAE 0.34% that is higher than accurate multiplier) based
AxDNN (see label A in Fig. 2 (b) and C in Fig. 4). Here,
the faults contribute towards approximately 8% accuracy loss
because the accuracy drops from 68.19% to 60.32% with fault
injection (see label C in Fig. 4 and label D in Fig. 2 (b)).
The same fault trend is observed in case of Fashion-MNIST
classification. Our quantitative fault resilience analysis in Fig.
8 and Fig. 9 show that the KVA- and KVB-based AxDNNs
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Figure 2. (a) Mean Average Error (MAE) of 8-bit Evoapprox8b [14] Signed
Multipliers, (b) Classification Accuracy of Approximate DNN architectures
(AxDNN), using the MNIST [15] and Fashion MNIST [16] datasets.

behave quite similar to accurate DNNs in the absence (see Fig.
3) and presence of faults (see Fig. 2 (b)) due to their very
low approximation error e.g., 0.0018% and 0.0064% MAE,
respectively. In other words, the higher the approximation error
is, the higher is the inexact nature of DNNs and hence, the
lower is their classification accuracy and fault resilience. In
this paper, the KR3-based AxDNN is not analyzed due to its
quite high MAE (i.e., 3.08%) and low classification accuracy
(see Fig. 2 (a) and Fig. 2 (b))

2) Fault Configuration vs Fault Resilience: Similar to the
accurate DNNs, the type and location of the faults may affect
the output of the AxDNNs. The faulty MSBs in both accurate
DNNs and AxDNNs may lead to substantial accuracy loss (e.g.,
approximately 98% to 100%), by changing the desired values
significantly, as compared to the faulty LSBs. The MNIST
[15] and Fashion-MNIST [16] classification with a fault in
the LSB of accurate multipliers in accurate DNNs may lead
to approximately 0% to 1% accuracy loss in comparison to
the non-faulty accurate DNNs (see Fig 2 (b) and Fig. 3).
However, it may lead to approximately 0% to 9% accuracy loss
in AxDNNs in comparison to non-faulty AxDNNs (as shown
in Fig. 2 (b) and Fig. 9 to Fig. 13). Interestingly, the MNIST
[15] classification with stuck-at-0 fault in the tenth bit of the
accurate multiplier-based Arch. 1 (fault in layer 1 only) results
in 86.54% accuracy (see label E in Fig. 3) but the same fault
configuration in KTY-based AxDNN leads to 16.3% accuracy
only (see label F in Fig. 4). Hence, the faults exacerbates the
accuracy loss with approximate computing in AxDNNs and the
fault resilience decreases from LSB to MSB. The same trend
is observed in case of Fashion-MNIST dataset. Furthermore,
it is observed that stuck-at-0 faults contribute comparatively
less towards the output quality degradation as compared to
the stuck-at-1 faults, on average, in both accurate DNNs and
AxDNNs. This effect is more noticeable in DNN layers 1 and
2 (e.g., see label G and H in Fig. 5).

3) DNN Design Configuration vs Fault Resilience: Similar
to the accurate DNNs, the impact of faults may vary with the
type of activation functions used in AxDNNs. Our quantitative
fault resilience analysis shows that Arch. 1 with tanh activation
function, in its hidden layers, seems to be comparatively less
disturbed by the faults, on average, as compared to Arch. 2
with sigmoid activation function. For example, the MNIST
[15] classification with stuck-at-0 fault in layer 1 (and tenth
bit) of the accurate multiplier-based Arch. 1 and Arch. 2
results in 8.27% (see label A in Fig. 2 (b) and label E in
Fig. 3) and 15.14% (see label I in Fig. 2 (b) and label J
in Fig. 3) accuracy loss, respectively, as compared to their
corresponding non-faulty accurate counterparts. Likewise, the
same fault configuration with KX2-based Arch. 1 and Arch. 2
yields 9.12% (see label A in Fig. 2 (b) and label K in Fig.
6) and 16.41% (see label I in Fig. 2 (b) and label L in Fig.
6) accuracy loss, respectively. In comparison to the non-faulty
approximate counterparts (see label M and N in Fig. 2 (b)),
these faults lead to 8.84% and 16% accuracy loss in Arch.
1 and Arch. 2, respectively, in the presence of approximation



error. The same trend is observed in case of Fashion-MNIST
dataset. Hence, the faults trend remains the same for different
DNN architectures regardless of their accurate and approximate
nature. Moreover, it is observed that the input layer is quite less
resilient to the faults as compared to the output layer. This effect

is more visible in MSBs (e.g., see layer 1 and 4 in Fig. 8). The
reason is that faults in the input layer may affect the output of
all DNN layers and decrease the fault resilience significantly.
For example, the MNIST classification with a stuck-at-1 fault
in thirteenth bit of the L1G approximate multiplier, located
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Figure 3. Stuck-at-0 and Stuck-at-1 Faults Resilience Analysis of Accurate DNN architectures using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 4. Stuck-at Faults Resilience Analysis of KTY-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 5. Stuck-at Faults Resilience Analysis of L2D-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 6. Stuck-at Faults Resilience Analysis of KX2-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 7. Stuck-at Faults Resilience Analysis of L1G-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.



in layer 1, of Arch. 1 can lead to approximately 82% and
56% accuracy loss, respectively, in comparison to non-faulty
accurate DNN (see label A in Fig. 2 (b) and label O in Fig.
7) and AxDNN (see label P in 2 (b) and label O in Fig. 7),
respectively. However, the same fault configuration in layer 4

can lead to approximately 30% and 3% accuracy loss only in
comparison to non-faulty accurate DNN (see label A in Fig.
2 (b) and label Q in Fig. 7) and AxDNN (see label O in Fig.
2 (b) and label Q in 7). Likewise, the Fashion-MNIST [16]
classification with similar fault configuration in layer 1 and 4
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Figure 8. Stuck-at Faults Resilience Analysis of KVB-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 9. Stuck-at Faults Resilience Analysis of KVA-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 10. Stuck-at Faults Resilience Analysis of KRC-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 11. Stuck-at Faults Resilience Analysis of KVL-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 12. Stuck-at Faults Resilience Analysis of KR6-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.
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Figure 13. Stuck-at Faults Resilience Analysis of L2H-based Approximate DNNs (AxDNN) [14], using the MNIST [15] and Fashion MNIST [16] datasets.

of KTY-based Arch. 2 leads to approximately 80% (see label
R in Fig. 4 and label S in Fig. 2 (b)) and 66% (see label T in
Fig. 4 and label S in Fig. 2 (b)) accuracy loss in comparison to
non-faulty accurate DNNs, respectively. Conversely, it has 9%
accuracy loss only in faulty accurate DNN (see label S in Fig.
2 (b) and label U in Fig. 3).

C. Fault-Energy Trade-off Exploration

Fig.14 compares the energy efficiency of the Evoapprox8b
[14] signed multipliers-based 8x8 systolic arrays [11]. It
is evident from this analysis that approximate computing
increases the energy efficiency of DNNs. The Evoapprox8b [14]
approximate multipliers are designed in such a way that they
provide low power or latency or both. Our fault resilience and
energy analysis reveals that the KVA- and KVB-based DNNs
are the most fault resilient but less energy efficient among the
Evoapprox8b-based AxDNNs. Furthermore, the L2D, L1G- and
KTY-based AxDNNs are least fault resilient but most energy
efficient due to their comparatively low classification accuracy
and energy consumption. Hence, the fault resilience and energy
efficiency are orthogonal to each other. As discussed earlier,
the fault resilience decreases significantly with faults in the
input layer and MSB (as discussed in Section IV-B). Hence,
the KRC-based AxDNNs seems to be quite energy efficient and
fault resilient as it exhibit above 90% and 80% accuracy, with
faulty LSB in the input layer, in the MNIST [15] and Fashion
MNIST [16] classification (as shown in Fig. 10), respectively.
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Figure 14. Energy Analysis of Approximate 8x8 Systolic Arrays using
Evoapprox8b [14] Signed Multipliers

V. CONCLUSION

Approximate computing relaxes the abstraction of
near-perfect accuracy in error resilient applications to
improve their energy efficiency. However, such inexactness
may reduce the fault resilience in DNNs. Towards this, we
explore fault-energy trade-offs in approximate FFNNs, using
the state-of-the-art Evoapprox8b [14] signed multipliers, by
varying the stuck-at-0 and stuck-at-1 fault-bit positions and
using different activation functions (e.g., tanh and sigmoid)

in the hidden layers. Our results demonstrate that the faults
exacerbates the accuracy loss, from LSB to MSB and output
to input layer, with approximate computing in AxDNNs. Their
impact also varies with the activation functions. We observe
that analysis reveals that the fault resilience and energy
efficiency of AxDNNs are orthogonal to each other.
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