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Abstract—Industry 4.0 is the latest industrial revolution pri-
marily merging automation with advanced manufacturing to
reduce direct human effort and resources. Predictive maintenance
(PdM) is an industry 4.0 solution, which facilitates predicting
faults in a component or a system powered by state-of-the-
art machine learning (ML) algorithms (especially deep learning
algorithms) and the Internet-of-Things (IoT) sensors. However,
IoT sensors and deep learning (DL) algorithms, both are known
for their vulnerabilities to cyber-attacks. In the context of PdM
systems, such attacks can have catastrophic consequences as they
are hard to detect due to the nature of the attack. To date, the
majority of the published literature focuses on the accuracy of DL
enabled PdM systems and often ignores the effect of such attacks.
In this paper, we demonstrate the effect of IoT sensor attacks (in
the form of false data injection attack) on a PdM system. At first,
we use three state-of-the-art DL algorithms, specifically, Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Convolutional Neural Network (CNN) for predicting the
Remaining Useful Life (RUL) of a turbofan engine using NASA’s
C-MAPSS dataset. The obtained results show that the GRU-based
PdM model outperforms some of the recent literature on RUL
prediction using the C-MAPSS dataset. Afterward, we model and
apply two different types of false data injection attacks (FDIA),
specifically, continuous and interim FDIAs on turbofan engine
sensor data and evaluate their impact on CNN, LSTM, and GRU-
based PdM systems. The obtained results demonstrate that FDI
attacks on even a few IoT sensors can strongly defect the RUL
prediction in all cases. However, the GRU-based PdM model
performs better in terms of accuracy and resiliency to FDIA.
Lastly, we perform a study on the GRU-based PdM model using
four different GRU networks with different sequence lengths.
Our experiments reveal an interesting relationship between the
accuracy, resiliency and sequence length for the GRU-based PdM
models.

Index Terms—deep learning, false data injection attack, LSTM,
GRU, CNN, industry 4.0, Internet of things, machine learning

I. INTRODUCTION

Current advances in machine learning (ML) techniques and
Internet-of-Things (IoT) sensors has enabled the emergence of
predictive maintenance (PdM), which is a method of prevent-
ing asset failure by analyzing production data and identifying
patterns to predict issues before they happen. State-of-the-art
PdM techniques outperform the classical PdM methods [1],
and can help reduce downtime by 35%-45%, maintenance
cost by 20%-25%, and can increase production by 20%-
25% [2]. Due to these benefits, IoT and ML-enabled PdM
solutions are reshaping automotive, aerospace, oil and gas,

transportation, manufacturing industries and also reshaping the
national defense. Specifically, deep learning (DL) algorithms
have recently shown tremendous success in such PdM appli-
cations [3]. Unfortunately, IoT sensors and DL algorithms are
both susceptible to attacks [4], which poses a significant threat
to the overall PdM system. According to a recent report from
the Malwarebytes, cyber-threats against businesses/factories
have increased by more than 200% over the past year [5].

Specifically, it is very hard to detect stealthy attacks, such
as False Data Injection Attack (FDIA) [6] on the PdM system
due to the nature of the attack. In an FDI attack [6], an attacker
stealthily compromises measurements from IoT sensors (by a
very small margin), such that the manipulated sensor mea-
surements bypass the sensor’s basic ‘faulty data’ detection
mechanism and propagates to the sensor output undetected.
Such attacks on a PdM system may not even show their impact
immediately. Instead, the attack propagates from the sensor
to the ML part of the PdM system and fools the system by
predicting a delayed asset failure or maintenance interval. This
might incur a significant cost by inducing an unplanned failure
or loss of human lives in safety-critical applications [7]–[9].

Extensive research has been performed on the detection and
mitigation of FDI attacks in cyber-physical systems (CPS)
domain [10]–[12]. Unfortunately, the effect of FDIA on a PdM
system is yet not explored which motivates our research. In
the case of aircraft engine PdM systems, FDIAs may result
in the delay of timely maintenance and lead to mid-air engine
failures which are catastrophic. Current users of PdM systems
for aircraft engine maintenance include Pratt and Whitney,
Rolls-Royce, Honeywell, General electronics and the US Air
force [7], [13]–[15]. For example, Bombardiers new jetliner
uses a Pratt and Whitney turbofan engine that boasted more
than 5,000 sensors [16], [17]. Powered with the modern DL
algorithms, this engine can predict the future demands of the
engine, perform adjustments, and thus save 15% of fuel usage.
However, the vulnerability of sensor-attacks against such IoT
and ML-based engines is considered a challenge [16], [18],
[19]. The existing sensor attack detection solutions in the IoT
and cyber-physical system domain is not sufficient to address
this problem due to the fact that, when deployed individually
to the thousands of sensors, most of the existing techniques
suffer from scalability problems and resource overheads as
many IoT sensors are power and resource-constrained.



Contribution of this paper: In this paper, we model continuous
and interim FDIAs on IoT sensors and show their impact
on a PdM model by performing a case study on the air-
craft Predictive Maintenance (PdM) system. We use the C-
MAPSS [20] (Commercial Modular Aero-Propulsion System
Simulation) dataset. At first, to build an accurate predictive
model, we train the Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and Convolutional Neural Network
(CNN) algorithms using the C-MAPSS dataset. We evaluate
these three predictive models, and the obtained results show
that the GRU-based model predicts the Remaining Useful Life
(RUL) most accurately. The obtained results from the GRU-
based model outperforms the recent works that use DL for
RUL prediction using the C-MAPSS dataset in [21]–[23] (by
predicting RUL 1.3-1.9 times more accurately).

Afterward, we model two types of FDI attacks on the
C-MAPSS dataset and evaluate their impact on CNN, LSTM,
and GRU-based PdM models. To be more realistic, we
model attack only on 3 sensors (attacks that modify their
readings by a very small margin) among the 21 sensors
in the dataset. The obtained results show that all the PdM
models are greatly defected by the FDIA even if only 3 out
of the 21 sensors are attacked. However, the GRU-based
PdM model is comparatively more accurate and resilient to
FDIA when compared to the other evaluated PdM models. In
terms of sensitivity, we also explore that CNN is way more
sensitive to FDIAs when compared to the LSTM and GRU.
Afterward, we analyze the GRU-based PdM model using
four different sequence lengths. The obtained results show an
interesting relationship between the accuracy, the resiliency
and the sequence length of the models. To the best of our
knowledge, this is the first work that demonstrates the effects
of IoT sensor attacks on a deep learning-enabled PdM system.

Paper organization: The rest of the paper is organized as
follows. Section II describes the modeling of FDIA in detail.
Section III compares the performance of CNN, LSTM, and
GRU in predicting RUL and analyses the impact on RUL
prediction using CNN, LSTM, and GRU after both continuous
and interim FDIA. Section IV presents the observations from
those obtained results, and Section V concludes the paper.

II. MODELING OF FDIA

In this section, we describe the modeling of FDIAs,
attacker’s objective, attack surface, and the attack scenarios
in detail.

False data injection attack (FDIA): An FDI attack [6]
can be injected into the system by compromising physical
sensors, sensor data communication links, and data processing
programs. Compromising physical sensors requires physical
access to the sensors and hence is a tedious task. In contrast,
hacking the sensor data communication links and data pro-
cessing programs is an easier option for an attacker (explained
in detail in the attack surface of this section). For example,
Xi represents the information transmitted by the ith sensor.

In an FDIA, the adversary contaminates the original vector
with a vicious vector. Let Xi = [x1, x2, ..., xk] be the original
vector data containing k sensor reading for the ith sensor.
The original vector could be contaminated by adding an FDIA
vector with the same dimension as the original vector. Let the
contaminated vector for the ith sensor be Fi = [λ1, λ2, ..., λk],
then the compromised vector is given by Eq. 1.

Zi = Xi + Fi (1)

In this work, we consider the constrained attack (attacker
has access to a limited number of sensors) since it is
more practical that an attacker has access to only a limited
number of sensors. We model two variations of FDIAs to
explore and compare their impact, specifically, continuous
FDIA and interim FDIA. In the case of continuous FDIA,
the attack is continuous, which means, once the attack
starts, from that point on-wards all the sensor reading are
compromised. For instance, if the attack starts at the time
instant atck start = 3 and ends at atck end then Fi can be
expressed as Fi = [λ1, λ2, λatck start, ..., λatck end], where
atck start ≥ 1 and atck end = k . In the case of interim
FDIA, the duration of attack is a short time interval, where
atck start > 1 and atck end < k.

Attacker’s stealthiness: An FDIA can be stealthy if it is not
detected by the defense mechanism. In order to achieve that
objective, the attack vector should remain in the boundary
conditions of the sensor measurements. There exist constant
vectors Zmin and Zmax, such that for any FDIA vector Zi, the
compromised vector passes undetected through the defense if

Zi = Xi + Fi and Zmin ≤ Zi ≤ Zmax (2)

We assume the attacker knows Zmin and Zmax to construct
attack vectors satisfying Eq.2. Such information is easily
available from the sensor data sheets provided by the vendor.

Attacker’s objective: The attacker’s objective is to cause
a delay in aircraft engine maintenance. This objective can
be achieved by altering the IoT sensors readings that are
fed to the PdM systems. Injecting false data to the sensor
readings results in incorrect predictions from PdM systems
which in turn results in a delay of timely maintenance. One
can argue that the attacker having access to the physical
sensors or the communication network of the sensors would
directly attack the main systems (flight navigation and
instrument landing systems) rather than just altering the
sensor values for the PdM. However, there is a higher chance
that a direct attack on the main system will easily get
detected by the defense mechanisms. In contrast, introducing
FDIA to sensors is a safer option for an attacker since
such attacks are more stealthy, hard to detect as they
are in the sensor’s acceptable range. Thus, such attacks
will cause an erroneous calculation of the RUL and might
delay the maintenance cycle leading to a catastrophic incident.



Attack surface: One of the recent articles [24] considers
cyber-attacks as one of the reasons behind the two recent
Boeing 737 Max 8 crashes. According to that article, a
passenger, vehicle or drone carrying a sonic device capable of
impacting the MCAS sensor controlling the plane could have
been responsible for such an attack. Recently, ICS-CERT
published an alert on certain controlled area network (CAN)
bus systems aboard aircraft that might be vulnerable to
hacking. It cited a report that an attacker with access to
the aircraft could attach a device to avionics CAN bus to
inject false data, resulting in incorrect readings in an avionic
equipment [25]. Using such a device attached to the bus
could lead to incorrect engine telemetry readings, incorrect
compass, altitude data, airspeed, and Angle of Attack (AoA)
data. Pilots might not be able to distinguish between false
and legitimate readings. This alert explores the possibility of
injecting false data into IoT sensor readings of aircraft engine
which are transmitted on a CAN. In this work we consider
FDIA using a malicious device attached to an avionics CAN.
Other attack surfaces are discussed in our extended paper [26].

Attack scenario: As shown in Fig.1 in [26] of the Engine
health monitoring (EHM) architecture, the aircraft sends Nb

cycles of data at a time to the ground station/engine man-
ufacturer. At the ground station, the PdM system performs
data analytics on the received data and sends out alerts if the
RUL is close to the threshold Nth. The value of Nth can
vary from engine to engine, and it is manufacturer-dependant.
An adversary having this knowledge can perform the attacks
more effectively. Assuming in an engine, the linear degradation
initially starts at Nd cycle. The value of Nd is different for
different engines, as the wear of the engines may be different.
If the average of Nd for all the engines in the dataset is
taken, it is found to be Nd

avg . An adversary knowing Nd
avg

can perform the attacks after the degradation initiates, making
the attack more destructive.

To study the impact of FDIA on PdM systems, we consider
an attack scenario where the attacker has access to the aircraft
and could attach a device to avionics CAN bus [25] as
mentioned previously in section II (attack surface). The device
attached to CAN bus can inject false data into engine sensor
readings, resulting in incorrect predictions of RUL of the
aircraft engine. In this work, we consider two variations of
FDIA which are continuous and interim FDIA. In continuous
FDIA, the attack is initiated after Nd and continues to the end-
of-life of the engine. In Interim FDIA, the attack is initiated
after Nd and continues to the next 20 time cycles. In both
the variations of FDIA, random and biased FDIAs are used to
evaluate the PdM model’s performance. Here, random FDIA
means the noise added to the sensor output has a range (0.01%
to 0.05%). Whereas, biased FDIA has a constant amount of
noise added to the sensor output.

III. EXPERIMENTAL RESULTS

In this section, we first compare three different DL algo-
rithms for RUL prediction. Next, we present both continuous

and interim FDIA signatures, and the impact of FDIAs on the
RUL prediction. Lastly, we present piece-wise RUL prediction
and detail the impact of sequence length on resiliency.

A. Comparison of deep learning algorithms

In order to select the best machine learning algorithm for
the PdM, we compare the performance of LSTM, GRU,
and CNN algorithms for the C-MAPSS dataset. To eval-
uate the performance of these DL models, we utilize the
root mean square error (RMSE) metric which is widely
used as an evaluation metric in model evaluation stud-
ies. Table I represents the comparison of these DL al-
gorithms with architectures LSTM(100,100,100,100) lh(80),
GRU(100,100,100) lh(80), and CNN(64,64,64,64) lh(100).
The notation GRU(100,100,100) lh(80) refers to a network
that has 100 nodes in the hidden layers of the first GRU layer,
100 nodes in the hidden layers of the second GRU layer, 100
nodes in the hidden layers of the third GRU layer, and a
sequence length of 80. In the end, there is a 1-dimensional
output layer. The details about the developed LSTM, GRU
and CNN models (including the hyperparameters), and the
C-MAPSS dataset can be found in the extended version of
this paper [26]. For the sake of reproducibility and to allow
the research community to build on our findings, the artifacts
(source code, datasets, etc.) of the following experiments are
publicly available on our GitHub repository1.

TABLE I: RMSE comparison for different DL algorithms

Predictor architecture RMSE
Test

CNN(64,64,64.64) lh(100) 9.94
LSTM(100,100,100,100) lh(80) 8.76

GRU(100,100,100) lh(80) 7.26

From Table I it is evident that the DL algorithm GRU(100,
100, 100) with a sequence length 80 has the least RMSE of
7.26. It means that GRU is very accurate in predicting accurate
RUL for this dataset. Note, the obtained results in Table I
show that our GRU-based predictive model performs 1.9, 1.7
and 1.3 times better (in terms of accuracy) when compared
to the recent works in [21], [23], [27], respectively, on RUL
estimation using DL algorithms and the C-MAPSS dataset.

B. Impact of attacks on a PdM system

The average degradation point of the engine Nd
avg is con-

sidered as 130 for the FD001 dataset [28] [29] [30], and we
assume that the EHM system of the aircraft sends 20-time
cycles (Nb) of data to the ground at a time. The details of
EHM, the parameter Nb and how the data is sent to the ground
are discussed in [26]. The FDIA can be performed on 21
sensors, but to make the attack more realistic, we perform
FDIA on only 3 sensors (specifically, T24, T50, and P30).
More information about these sensors can be found in [31].
In FDIA continuous scenario, the attacker has initiated the
attacks after Nd

avg , which is 130-time cycles (a one-time cycle

1https://github.com/dependable-cps/FDIA-PdM



(a) CNN during attack, random FDIA’s
RMSE=139.15, biased FDIA’s RMSE=85.07
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(b) LSTM during attack, random FDIA’s
RMSE=49.13, biased FDIA’s RMSE=38.07
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(c) GRU during attack, random FDIA’s
RMSE=43.8, biased FDIA’s RMSE=35.38
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Fig. 1: FDI attack scenario for continuous period

(a) CNN during attack, random FDIA’s
RMSE=46.91, biased FDIA’s RMSE=31.46
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(b) LSTM during attack, random FDIA’s
RMSE=21.80, biased FDIA’s RMSE=20.04
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(c) GRU during attack, random FDIA’s
RMSE=19.30, biased FDIA’s RMSE=17.64
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Fig. 2: FDI attack scenario for interim period

(a) GRU during attack; random FDIA’s
RMSE=48.45, biased FDIA’s RMSE=32.51
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(b) LSTM during attack; random FDIA’s
RMSE=53.09, biased FDIA’s RMSE=40.08
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(c) CNN during attack; random FDIA’s
RMSE=135.43, biased FDIA’s RMSE=83.04
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Fig. 3: Piece-wise RUL prediction for continuous FDIA
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(c) GRU during attack, random FDIA’s
RMSE=43.8, biased FDIA’s RMSE=35.38
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Fig. 1: FDI attack scenario for continuous period
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(b) LSTM during attack, random FDIA’s
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Fig. 2: FDI attack scenario for interim period
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is equivalent of one flight hour), and the attack duration is until
end of life of the engine. In FDIA interim scenario, the attacker
has initiated the attacks after Nd

avg , which is 130-time cycles,
and the attack duration is 20 hours (20-time cycles). Since the
attack is initiated after 130-time cycles, we only consider the
engines which have data for more than 130 cycles which gives
us 37 engines in the FD001 dataset. The resultant dataset is re-
evaluated using the LSTM, CNN and GRU-based PdM models
and the obtained RMSEs are 6.09, 7.50, and 5.36, respectively.
FDIA signature: To model the FDIA on sensors, we add a
vicious vector to the original vector, which modifies the sensor
output by a very small margin (0.01% to 0.05%) for random
FDIA and 0.02% for biased FDIA. Here, random FDIA means
the noise added to the sensor output has a range (0.01% to

0.05%). Whereas, biased FDIA has a constant amount of noise
added to the sensor output. The attack signatures can be found
in our extended paper [26].
Impact of FDIA on CNN, LSTM and GRU: To show the
impact of an FDIA on the aircraft PdM system, we implement
an attack for the scenario mentioned previously in Section II
(attack scenario). The FDIA is performed on three sensors
(T24, T50, and P30) instead of attacking all the 21 sensors
in the dataset. In FDIA continuous scenario, the adversary
performs attacks from 130-time cycles to end of life of the
engine. It is evident from Fig. 1 that LSTM, GRU, and CNN
are greatly affected by the continuous FDI attack. In the
case of random and biased FDIA, random FDIA showed a
considerable impact on all PdM models. The CNN based PdM



(a) GRU during attack; random FDIA’s
RMSE=25.69, biased FDIA’s RMSE=22.92
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(b) LSTM during attack; random FDIA’s
RMSE=27.25, biased FDIA’s RMSE=25.07
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(c) CNN during attack; random FDIA’s
RMSE=57.42, biased FDIA’s RMSE=33.99
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Fig. 4: Piece-wise RUL prediction for Interim FDIAFig. 4: Piece-wise RUL prediction for Interim FDIA

model is the most affected by the continuous FDIA as random
FDIA’s RMSE is 139.15 and biased FDIA’s RMSE is 85.07
(true RMSE is 7.50) which is almost 18 times and 11 times
higher when compared to the true RMSE, respectively. In
contrast, the GRU based PdM model is the least affected by the
continuous FDIA as random FDIA’s RMSE is 43.8 and biased
FDIA’s RMSE is 35.38 (true RMSE is 5.36). Even though
the GRU is least affected by both random and biased FDIA,
their RMSE is 8 and 6 times higher than the true RMSE,
respectively, making it also deadly for a PdM system.

In the FDIA interim scenario, the adversary performs attacks
between 130 and 150-time cycles (20-time cycles). It is evident
from Fig. 2 that LSTM, GRU, and CNN are greatly affected
by the interim FDI attack. Once again, the CNN based PdM
model is greatly affected by the continuous FDIA as random
FDIA’s RMSE is 46.91 and biased FDIA’s RMSE is 31.46
(true RMSE is 7.50) which is almost 6 times and 4 times
higher than the true RMSE, respectively. In contrast, the GRU
based PdM model is the least affected by the interim FDIA
as random FDIA’s RMSE is 19.30 and biased FDIA’s RMSE
is 17.64 (true RMSE is 5.36). This indicates that GRU-based
PdM models are comparatively resilient to both continuous
and interim FDIA. Even though the GRU is least affected by
both random and biased FDIA, their RMSE is still 4 times
and 3 times higher than the true RMSE, respectively, making
it deadly for a PdM system. When comparing both continuous
and interim FDIA, it observed that continuous FDIA’s RMSE
is almost twice the interim FDIA’s RMSE. Hence, continuous
FDIAs are more potent than interim FDIA.

C. Piece-wise RUL prediction

In order to show the impact of FDIA attacks on a specific
engine data, we apply the piece-wise RUL prediction. The
piece-wise RUL prediction gives a better visual representation
of degradation in an aircraft engine. Fig. 3(a) shows an
example of an engine data from the dataset of 100 engines,
and depicts the predicted RUL using GRU at each time step
of that engine data. For example, if X is the time series
data of a particular engine, then Xi = [x1, x2, x3...xt−k]
represents time series data until time t−k. RULp is predicted
RUL at each time step in X , which is can be defined as

RULp
i = [RULp

1, RUL
p
2, RUL

p
3...RUL

p
t−k]. From Fig. 3(a),

it is evident that as the time series approaches the end of life,
the predicted RUL (red line) is close to the true RUL (blue
dashes), because the DL model has more time series data to
accurately predict the RUL.

In the case of piece-wise RUL prediction during continuous
FDIA, it is observed from Fig. 3 that both random and
biased FDIAs are initiated from 130-time cycles to 242-
time cycles for engine ID 17. Here, the green and yellow
dashes in the figures are predicted RUL after random and
biased FDIA, respectively. In the GRU, LSTM, and CNN
based piece-wise RUL prediction (for both random and biased
FDIA), the attacker initiates the FDIA after 130-time cycles.
The impact of the attack is quite interesting as the RUL
jumps upwards (around 200 for GRU and LSTM) with a
possible indication to the engine maintenance operator that the
engine is quite healthy. This may influence a ‘no maintenance
required’ decision from the maintenance engineers’ point of
view, however, in reality, the RUL is decreasing continuously
and going below the 100-time cycles which might require to
schedule urgent maintenance leading to a catastrophic event.
For CNN, the continuous FDIA causes a longer jump (even
beyond the initial RUL value) when compared to the FDIA in
LSTM and GRU. Of course, there is a higher chance that this
will be flagged as a potential fault either in the engine or in the
PdM system, and will cause unnecessary engine maintenance
and will increase the aircraft downtown causing a financial
loss to the flight operator.

In the case of piece-wise RUL prediction for engine ID 17
under interim FDIA, it is observed in Fig. 4 that the attack
causes a similar jump as shown in the case of continuous
FDIA in Fig. 3. However, the effect of the attack flushes away
way sooner when compared to the continuous FDIA case.
However, note that the attack duration was only 20 cycles,
but it took more than 45 cycles to flush out the effect by
the PdM system. Hence, if maintenance is due around that
period, it may lead to catastrophic consequences. Once again,
the piece-wise RUL prediction results indicate that employing
CNN in PdM systems may result in systems that are very
sensitive to the FDIA and hence special measures should be



taken for designing a CNN-based PdM.

D. Impact of sequence length on resiliency of GRU

Since GRU has performed best among the DL algo-
rithms as shown in the experimental results in the pre-
vious subsections, in Fig. 5 we compare four different
GRU networks under FDI attack. The GRU networks have
structures GRU1(100,100,100) lh(90), GRU2(100,100,100)
lh(80), GRU3(100,100,100) lh(70), and GRU4(100,100,100)
lh(60). We observe that the GRU network with architec-
ture GRU2(100,100,100) lh 80 has the least value of true
RMSE (5.36), which means that it predicts RUL quite ac-
curately, however, it is less resilient to both continuous and
interim FDIA. In contrast, GRU with network architecture
GRU3(100,100,100) lh(70) shows the second-best perfor-
mance in predicting the RUL (RMSE of 6.89), however, in
terms of resiliency, this network is the least affected by con-
tinuous and interim FDIA. This indeed shows an interesting
insight that the sequence length affects not only the accuracy
but also the resiliency of the model. It also indicates that
accuracy should not be the only factor while designing a
PdM system. For instance, in terms of accuracy GRU2 is the
typical choice. However, if both accuracy and resiliency are
considered, GRU3 is can be an ideal choice (at the cost of
losing some accuracy).

Fig. 5: RMSE comparison of different GRU networks

IV. DISCUSSION

In this work, we first evaluate three different DL algorithms
on the C-MAPSS dataset and obtained results show a great
prospect for deep learning in PdM. Results show that the GRU
performed 1.3-1.9 times better than the recent works that use
deep learning on the C-MAPSS dataset [21], [23], [27]. The
impact analysis of FDIA on aircraft sensors in the C-MAPSS
dataset provides some interesting insights. We observe that
CNN based PdM model is greatly affected by both random and
biased FDIA. In the case of interim FDIA, CNN’s random and
biased RMSE are 18 and 11 times higher than the true RMSE,
respectively, and in the case of continuous, the random and
biased RMSE are 6 and 4 times higher than the true RMSE,

respectively. We also observe that the GRU-based PdM model
is more resilient to both random and biased in comparison
with CNN and LSTM-based PdM models. Even though the
GRU is least affected by both random and biased FDIA, their
RMSE is 8 and 6 times higher than the true RMSE in the case
of continuous FDIA, respectively. In the case of interim FDIA,
the random and biased RMSE are 4 and 3 times higher than
the true RMSE, respectively, making it disastrous for the PdM
system. This may result in the delay of timely maintenance
for the aircraft engine and eventually result in engine failure
at some point. Note, the attack signature of FDIA is very close
to the original sensor output making it harder to be detected
by common defense mechanisms in an EHM system.

A piece-wise RUL predicting approach is used in visualizing
the impact of attacks on the sensors, which clearly shows that
the PdM system is susceptible to sensor attacks. CNN based
piece-wise RUL prediction results show that special measures
should be taken when designing and adopting CNN-based
PdM systems (such as the cases in [32]–[35]) as they are very
sensitive to the FDIA. Fig.5, gives an interesting insight into
the relationship between accuracy and resiliency of the GRU
network. It shows the need for considering the relationship
between the accuracy, resiliency and sequence length of a
DL mode (such as GRU in our case) in the design phase.
Indeed, such an analysis can serve as empirical guidance to
the development of subsequent data-driven PdM systems.

All of these obtained results show that DL-based PdM
systems have a great prospect for aircraft maintenance, how-
ever, they are very susceptible to sensor attacks. Hence it is
required to investigate proper detection techniques to detect
such stealthy attacks and special care should be taken when
manufacturing IoT sensors for DL/AI applications. For the
same reason, while designing a PdM system, the designer also
must consider the resiliency of the DL algorithm instead of just
emphasizing on the algorithm’s accuracy.

V. CONCLUSIONS AND FUTURE WORKS

This paper compares the performance of LSTM, GRU, and
CNN for RUL prediction using the C-MAPSS dataset, and
explores the impacts of continuous and interim FDI attacks
on these deep learning algorithms. We observe that the GRU
is a better suited DL technique when compared to LSTM and
CNN in terms of accuracy. The obtained results show that both
continuous and interim FDIA have a substantial impact on the
RUL prediction even if only a few IoT sensors are attacked.
We also observed that the GRU-based PdM model is more
resilient to FDIA, whereas CNN is dramatically sensitive to
both continuous and interim FDIA. Finally, we explored that
there exists a relationship between the accuracy and sequence
length in the GRU-based PdM model which can serve as
empirical guidance to the development of data-driven PdM
systems. In the future, we plan to develop an end-to-end
methodology for the detection and mitigation of sensor attacks
in a PdM system.
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