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ABSTRACT

Cyber-physical systems must meet high RAMS—reliability,
availability, maintainability, and safety—standards. It is of
essence to implement robust maintenance policies that de-
crease system downtime in a cost-effective way. Power plants
and smart buildings are prominent examples where the cost
of periodic inspections is high, and should be mitigated with-
out compromising system reliability and availability. Fault
Maintenance Trees (FMTs), a novel extension in fault tree
analysis, can be used to assess system resilience: FMTs al-
low reasoning about failures in the presence of maintenance
strategies, by encoding fault modes in a comprehensible and
“maintenance-friendly” manner. A main concern is how to
build a concrete model from the FMT, in order to compute
the relevant RAMS metrics via (ideally automatic) analyses.
Formal methods offer automated and trustworthy techniques
to tackle with such task. In this work, we apply quantita-
tive model checking—a well established formal verification
technique—to analyse the FMT of a Heating, Ventilation and
Air-Conditioning unit from a smart building. More specifi-
cally, we model the FMT in terms of continuous-time Markov
chains and priced time automata, which we respectively anal-
yse using probabilistic and statistical model checking. In this
way we are capable of automatically estimating the reliability,
availability, expected number of failures, and differentiated
costs of the FMT model for various time horizons and main-
tenance policies. We further contrast the two approaches we
use, and identify their advantages and drawbacks.

Alessandro Abate et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

ACRONYMS

AHU Air Handling Unit
BE Basic Event
CSL Continuous Stochastic Logic
CTMC Continuous Time Markov Chain
DFT Dynamic Fault Tree
EBE Extended Basic Event
ENF Expected Number of Failures
FMT Fault Maintenance Tree
HVAC Heating, Ventilation and Air-Conditioning
IE Intermediate Event
IM Inspection Module
KPI Key Performance Indicator
MTTF Mean Time To Failure
PMC Probabilistic Model Checking
PTA Priced Time Automata
RAMS Reliability, Availability, Maintainability, Safety
RM Repair Module
SMC Statistical Model Checking
TA Time Automata
TLE Top Level Event

1. INTRODUCTION

The high standards imposed upon many cyber-physical sys-
tems are usually met with inspection-intensive, heavily re-
silient maintenance policies which are carefully devised to
diminish the chances of downtime. In spite of the best en-
deavours, such policies are prone to become costly, and the
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Figure 1. Overall work flow, from HVAC to computation of RAMS metrics

compromise between maintenance budget and the probabil-
ity of system failure is, more often than not, a multi-variate
problem of high complexity. Modern edifices are a prominent
example, where the cost of periodic inspections is high, and
should be mitigated at the same time that the fault resilience
of the system is kept at the desired level.

All of this is inserted in a modern world with a steadily in-
creasing interest in making things “smart.” In the building
sector in particular, engineers and researchers have been fo-
cused for years in developing (ever more) smart buildings,
which feature a supervised control system for lighting, venti-
lation, surveillance, heating, etc. This enables a more efficient
use of resources aimed at guaranteeing all basic functional-
ity. To better steer decision making at the individual level,
myriads of present-day works focus on detecting occupancy
in rooms (Zhao et al., 2016; Dong, Lam, & Neuman, 2011),
synthesising optimal control policies (Lindelöf et al., 2015;
Haesaert, Cauchi, & Abate, 2017), and modelling the internal
zone temperature and air quality (R. Volk, Stengel, & Schult-
mann, 2014; Han, Gao, & Fan, 2012). Among other features,
smart buildings are characterised by a swarm of monitoring
sensors: their constant reading of the internal environmental
conditions is intended to deliver all necessary services to en-
sure comfort and productivity of the inhabitants, e.g. proper
thermal stability and good air quality. These services must be
ubiquitous, compliant with RAMS—reliability, availability,
maintainability, and safety—requirements, and cost effective.
The correct and dependable operation of the premises is sub-
ject to the availability of such services which, in turn, require
all components in the building to work at sufficient capacity.

A crucial component in smart buildings is the Heat, Ventila-
tion, and Air-Conditioning unit (HVAC) that regulates tem-
perature and air circulation. The lifespan and reliability of
the HVAC can be improved by coupling early fault detec-
tion with maintenance actions. Maintenance can be optimised
for each specific setting studied: many methodologies to ap-
proach such optimisation can be found in the literature, e.g.
condition-based maintenance modelling (Alaswad & Xiang,
2017), predictive maintenance (Macek, Endel, Cauchi, & Aba-
te, 2017), and so on; the reader is referred to Nicolai and

Dekker (2008) for a review. A novel technique involves de-
composing the various fault modes of the system in a so called
Fault Maintenance Tree (FMT, Ruijters, Guck, Drolenga, &
Stoelinga, 2016; Ruijters, Guck, Drolenga, Peters, & Stoe-
linga, 2016). FMTs extend Fault Trees (which are commonly
deployed in RAMS analyses) by introducing maintenance
driven concepts like inspections and partial degradation of
components. FMT analyses enable an in-depth study of the
relevant RAMS metrics, e.g. system reliability and total costs
incurred, which then serve as platform for planning concrete
improvements on the implemented maintenance policy.

However, an FMT is a high-level concept. This means that,
although descriptive and convenient for reasoning about sys-
tem health decay, an FMT needs to be instantiated in order
to allow a concrete computation of metrics1. For that pur-
pose, formal methods in computer science offer a variety of
modelling formalisms that can capture the behaviours under-
lying an FMT description. Among the main appeals of these
methods we highlight (i) the formal guarantees of correctness
for the results computed, and (ii) the automation of the com-
puting procedures, once the model and property queries have
been specified. For these reasons, together with their ade-
quacy to the structured nature of FMTs, formal methods are
a promising choice when looking for mechanisms to derive
RAMS metrics of a system.

In this work we use two well known modelling formalisms,
namely continuous-time Markov chains (Aziz, Sanwal, Sing-
hal, & Brayton, 2000) and priced time automata (Behrmann,
Larsen, & Rasmussen, 2004), to instantiate our FMT of an
HVAC unit. This means that Markov chains and time au-
tomata are implemented in computer software tools, yield-
ing concrete (independent) representations of the higher-level
FMT. The “concrete models” resulting from such implemen-
tations can be analysed via formal methods (e.g. quantitative
model checking), to estimate values for all relevant RAMS
metrics. We employ two alternative approaches to do this:
for the continuous-time Markov chain model we use prob-
abilistic model checking, and for the priced time automata
model we use statistical model checking. In particular, we

1 Technically speaking the FMT is given semantics as a (formal) model.
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measure the reliability, availability, expected number of fail-
ures, and differentiated costs, which characterise the FMT
HVAC model. Fig. 1 presents a schematic overview of the
whole analysis process.

In this manner we aim to address two main challenges:

• motivate the use of formal methods in computer science
for RAMS assessment of systems in smart buildings, and

• contrast the capabilities of the two model checking tech-
niques chosen for the task.

To illustrate the potential and adequacy of our approach, we
compute the aforementioned metrics for various time hori-
zons and using different maintenance policies. Furthermore,
we discuss the benefits and drawbacks of the two specific
analysis techniques chosen. In this way we substantiate our
claim that formal methods, in combination with FMT mod-
elling, offer a rich framework to reason about the RAMS
properties of a system, thus facilitating the selection of the
maintenance policies that suit best a specific purpose.

This article is structured as follows: Sec. 2 presents the HVAC
conceptualization chosen as central case study; Sec. 3 briefly
introduces the fundamental theoretical concepts upon which
our analyses are constructed; Sec. 4 describes in detail our ap-
plication of formal methods to the case study; Sec. 5 presents
and discusses the results yielded by the analyses described in
Sec. 4; and Sec. 6 concludes this work, also mentioning some
intended lines for future research.

2. HVAC CASE STUDY

The specific HVAC set-up considered in this work is depicted
in Fig. 2, and corresponds to the system found in the “smart
buildings” laboratory at the Department of Computer Sci-
ence, University of Oxford, first examined by Cauchi, Hoque,
Abate, and Stoelinga (2017). It also corresponds to HVAC
units found commonly in medium-sized buildings (Kim &
Katipamula, 2017). The set-up is composed of two circuits:
one for water circulation and the other for air circulation. In
the water circuit, the gas boiler warms up the supply water
which is then transferred to the air handling unit (AHU), the
heating coils, and the zone (or room) radiators. The rate of
water flow is controlled via valves in the heating coil and in
the radiators. In the air circuit, outside air is pumped into the
AHU and mixed with zone air, until a homogeneous temper-
ature is achieved in the mixer. The mixed air is then warmed
up to the required temperature using the heating coil. A fan
pushes this air into the zone at a rate controlled by the AHU
dampers. On the other hand, the radiator is directly connected
to the water circuitry and transfers heat from the supply wa-
ter to the zone. The return water from the heating coil and all
radiators is then gathered by the collector and pumped back
to the boiler, where the heating cycle is restarted.

Figure 2. Schematic depiction of the HVAC set-up

The correct and continuous operation of the HVAC depends
on the proper operation of its subsystems. Usually, all indi-
vidual components from these subsystems have different ex-
pected lifetimes, as well as different sources of degradation
and failures. For instance, the valves can get stuck due to the
gradual increase in deposits from the water flow. This lim-
its the rate of water flow in the heating system, consequently
reducing the heat exchange rate. The supply fan gradually
decreases its efficiency as the lifetime of the fan motor in-
creases, while it may cease to work if it breaks due to a failure
of the fan bearings or the motor itself. The AHU damper may
break due to build up of fouling (Trojanova, Vass, Macek,
Rojíček, & Stluka, 2009). The radiator may fail due to rust
and leak inhibitors, which form solids that collect in the ra-
diator cooling system and restrict the water flow. The boiler
heating capacity reduces with age, due to corrosion and the
accumulation of dust and dirt in the internal heat exchanger
and flue (Durkin, 2006).

The aforementioned issues are a subset of possible failure
causes that may lead to downtime of the HVAC unit from
Fig. 2. When maintenance actions are being planned, all such
(foreseeable) events must be considered to ensure compliance
with the RAMS requirements. However and in spite of the
best efforts, the operation of the individual components—
and thus the whole system—degrades as time passes. This
leads to a reduction in system performance and an increase
in the operational and maintenance costs. To mitigate these
expenses, service and maintenance strategies should be care-
fully designed and assessed. The main question is how to
increase the performance of the whole system, while min-
imising the total number of expected failures and operational
costs. In this work, we address such challenge by present-
ing techniques to assess the performance of an HVAC under
different maintenance policies. These analysis techniques are
automatic and enable a comparison of policies from different
angles. Thus, following the work flow described in Fig. 1,
any maintenance scheme can be updated and refined until the
desired RAMS criteria is met.
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3. THEORETICAL BACKGROUND

In order to tune a maintenance policy to the specific failure
modes of an HVAC unit, and achieve the desired level of
system resilience at reasonable costs, methodical and thor-
ough analyses must be carried out. The modular structure of
HVACs permits reasoning about operation and performance
via fault maintenance trees. In particular this allows us to
estimate and contrast a selection of RAMS metrics, based
on which we can study the trade-off between system perfor-
mance and money investment in maintenance actions.

In this section we give a brief introduction to FMTs, pro-
viding the necessary background to comprehend our model
of the (fault modes of the) HVAC unit set-up presented in
Sec. 2. We also formalise all metrics studied, and summarise
the model checking concepts and techniques employed to es-
timate the metrics from our FMT.

3.1. Fault maintenance trees

Fault trees (Vesely, Goldberg, Roberts, & Haasl, 1981) are di-
rected acyclic graphs consisting of two types of nodes: events
and gates. An event is an occurrence within the system, e.g.
the failure of a subsystem down to an individual component.
Events can be divided into basic events (BEs) and intermedi-
ate events (IEs). BEs correspond to the leaves in fault trees
and denote atomic failures in the system, typically modelled
via random variables following the exponential distribution.
IEs correspond to internal events which are caused by one or
more other events. The event at the top of the tree, called the
top event (TLE), represents the main event being analysed,
i.e. a failure of the whole system under consideration.

The internal nodes of the graph are called gates and describe
how failures in basic events and lower level gates interact, as
they propagate towards the TLE. Each gate has one output
and one or more inputs. Gates in (standard) fault trees are
static, in the sense that their output at any point in time de-
pends solely on the configuration of their inputs in that mo-
ment. Different gates model different logical interactions.
These include (i) OR gates, which require only one child
to fail in order to propagate a failure to the next level, (ii)
AND gates, which require all children to fail, and (iii) VOTk

gates, which fail if > k children fail (Vesely et al., 2002).
In standard fault trees a closed-form solution exists for many
RAMS metrics, provided the distribution parameters of the
basic events is known. Fig. 3 shows a fault tree instance.

Dynamic fault trees (DFTs) are a proper superset of fault
trees, extended with gates that exhibit time- or order-dependent
behaviour. This adds a level of complexity that rules out an-
alytical approaches for DFTs (M. Volk, Junges, & Katoen,
2018), that is, no closed-form solution exists to compute most
RAMS metrics from general DFTs. Fault maintenance trees
are a superset of DFTs enriched with maintenance concepts
(Ruijters, Guck, Drolenga, et al., 2016). This is achieved by

the introduction of:

1. Extended Basic Events (EBEs), which are basic events
whose failures are Erlang rather than exponentially dis-
tributed. The subsequent stepwise degradation as a func-
tion of time allows e.g. identifying lightly degraded com-
ponents, whose health can be restored before an actual
failure (that may trigger a TLE) occurs;

2. Maintenance modules, which handle timely inspections
and repairs. The repair module (RM) performs cleaning,
repair, or replacement actions on EBEs. These actions
can be carried out either using fixed time schedules or
when enabled by the inspection module (IM). The RM
can also perform periodic maintenance actions indepen-
dently of the IM. The IM performs periodic inspections
and, when components degradation rises above a prede-
fined threshold, a maintenance action is triggered by the
IM and carried out by the RM, outside of the periodic
maintenance cycle of the RM.

Figure 3. Fault tree with three basic events: BEs 2 and 3 are con-
nected to an AND gate which triggers an IE. The IE is connected to
an OR gate together with BE 1 and propagates failures to the TLE.

3.2. Metrics

Several RAMS requirements can be formalised as Key Per-
formance Indicators (KPIs), i.e. a set of metrics which are
specified over a time horizon T > 0, and quantify failures in
the time window [0, T ]. Some of the most relevant KPIs are:

• Reliability - the probability of the system not failing (i.e.
observing a TLE) in the time window [0, T ];

• Availability - the expected fraction of time in the window
[0, T ] that the system is operational;

• Expected number of failures (ENF) - the expected num-
ber of times a TLE is observed in the time window [0, T ];

• Expected costs - the total expected costs incurred in the
time window [0, T ], including operational costs, inspec-
tion costs, costs of maintenance actions triggered, and
costs associated to system failures.

We include the expected costs because maintenance is essen-
tially a cost-driven concept. The costs accrued during system
(in)operation, and also those incurred in the various service

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

actions and inspections, provide further insight on how well
the HVAC is performing.

3.3. Model checking

FMT offers an abstract description of the fault modes of a
system. This enables reasoning about the failure mechanisms
but, to compute the metrics listed in Sec. 3.2 and to assess a
particular maintenance policy, it is necessary to provide se-
mantics to (viz. instantiate) the FMT. For this purpose, one
can choose from a wide variety of modelling formalisms de-
veloped in the active area of formal methods in computer sci-
ence. In particular we use continuous-time Markov chains
(CTMC) and priced time automata (PTA). These are widely
used formalisms that have rich tool support, and whose ex-
pressiveness meets our modelling requirements.

For both the CTMC and the PTA semantics of the FMT
model, the KPIs of interest can be quantified via quantitative
model checking (Clarke, Emerson, & Sistla, 1986). This is
a well-established formal verification technique used to ver-
ify the correctness of finite-state automata. In general, model
checking algorithms take two inputs: (i) a formal model of the
system to be analysed, e.g. a description of the HVAC FMT
as a CTMC, and (ii) a property query to be verified, usu-
ally following the syntax of some temporal logic. To check
whether the query is valid in the model, these algorithms ex-
plore exhaustively and automatically all possible system con-
figurations (states). In quantitative model checking applied to
stochastic models, the likelihood of satisfiability of a property
can be quantified, e.g. what is the probability of observing a
system failure in a given time window. Furthermore, states
and transitions can be augmented with rewards—real num-
bers associated with certain states or transitions of the model.
This allows the computation of the expected value achieved
by taking certain transitions or visiting particular states. For
instance, one can encode the act of performing an inspection
by associating a reward CI to the corresponding model tran-
sition, where CI is the cost of performing an inspection in
the HVAC. Then the expected value computed for such tran-
sition in the time window [0, T ], is the expected cost incurred
by HVAC inspections in that time span of system operation.

Quantitative model checking is a broad field that comes in
different flavours (Clarke, Grumberg, & Peled, 1999). Prob-
abilistic model checking (PMC, Kwiatkowska, Norman, &
Parker, 2018) and Monte Carlo simulation techniques like
Statistical model checking (SMC, Legay, Delahaye, & Ben-
salem, 2010) stand among its most prominent examples. In
this work we perform analyses using both techniques, and
present a comparison between the two.

3.3.1. Probabilistic model checking

PMC deals with systems that exhibit stochastic behaviour and
is based on the construction and analysis of a probabilistic
model of the system. It refers to a state space analysis tech-

nique for probabilistic finite state automata. The system is
usually specified as a state transition model with probability
as rates of transitions and labels on both the transitions and
the states. A probabilistic model checker can calculate the
probabilities of reaching different states in a model or com-
pute the expected reward given a time horizon. For our state
transition model we make use of CTMCs with labels in both
transition and states.

Definition 3.1. The tuple C = (S, sinit,TL,AP, L,R) de-
fines a CTMC which is composed of:

• a set of states S,
• the initial state sinit ∈ S,
• a finite set of transition labels TL,
• a finite set of atomic propositions AP,
• a labelling function L : S → 2AP , and
• the transition rate matrix R : S × S → R≥0.

The rate R(s, s′) defines the delay before which a transition
between states s and s′ takes place. If R(s, s′) 6= 0 then
the probability that a transition between the states s and s′ is
defined as 1 − e−R(s,s′)t, where t is time. No transitions can
trigger if R(s, s′) = 0.

Fig. 4 presents a CTMC described using the tuple C where
S = {s0, s1}, sinit = s0, TL = {do_maintenance,
check_maintenance, reset, wait}, AP = {a, b},
L(s0) = a , L(s1) = b and

R =

[
0.5 0.5
0.25 0.75

]
.

Note, a system can be modelled using multiple CTMCs rep-
resenting different subcomponents. Transition labels are then
used to synchronise the individual CTMCs representing dif-
ferent parts of a system and in turn obtain the full CTMC
representing the whole system.

s0

{a}

s1

{b}

check_maintenance, 0.5

do_maintenance, 0.5

reset,0.75

wait,0.25

Figure 4. Example of a CTMC

To compute KPI metrics using PMC, we express proper-
ties in Continuous Stochastic Logic (CSL), which includes
reward formulae. See Kwiatkowska, Norman, and Parker
(2007) for the syntax and semantics of CSL. States (or partic-
ular transitions) can be associated with a real-valued reward,
which allows us to compute reward based queries such as the
expected cost of an action in a time window. Examples of
CSL properties with its natural language translation are:
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• P≥0.9[F b] - “The probability of the system eventually
reaching the state labelled with ‘b’ is at least 0.9."

• R=?[F a] - “What is the expected reward accumulated
until the system reaches the state labelled with ‘a’?"

3.3.2. Statistical model checking

SMC solves basically the same questions that PMC does, but
from the perspective of Monte Carlo simulation and statistical
analysis. Rather than an exhaustive exploration of the state
space, SMC samples finitely many (independent and random)
runs of model behaviour, typically in the shape of execution
traces. These traces are sequences of states and transitions
that follow the semantics of the model, i.e. simulations over a
specified finite time horizon. For any specified query, e.g.
“can the model fail in the time window [0, T ]?,” or “how
much do inspections cost?,” each trace yields a concrete qual-
itative or quantitative answer, e.g. “on this trace the model did
not fail within the time window [0, T ],” or “over this trace this
much money was spent in inspections.” The more (indepen-
dent and random) traces are generated, the more information
of the stochastic behaviour of the model is gathered, and thus
the more precisely and confidently can the query be answered
in general.

The outcomes of these simulations can be regarded as a ran-
dom sample of model behaviour. SMC performs statistical
analyses on such random sample, in order to estimate an an-
swer to the property query: the result will be e.g. a confi-
dence interval, which contains the true value of the property
with a certain level of confidence typically predefined by the
user. Following traditional statistical concepts, the probabil-
ity of SMC converging to an incorrect answer can be arbitrar-
ily bounded (Younes & Simmons, 2002). This contrasts to
PMC, where result correctness is formally guaranteed. An-
other difference with PMC is that SMC may take a longer
(computation) time to build a sufficiently large random sam-
ple, viz. sample enough execution traces, in order to build a
confidence interval with the desired confidence and precision.
On the other hand, memory consumption by SMC is usually
constant and thus negligible. This allows its use in many large
models where, due to the hardware computing capabilities,
PMC cannot deal with the amount of states involved.

With SMC we estimate KPI metrics from the FMT modelled
as a priced timed automaton. PTA are an extension of timed
automata (TA, Bengtsson & Yi, 2003) enriched with costs on
locations (aka states) and actions. TA are transition systems
using real-valued clocks and time invariants to specify dead-
lines. Invariants decorate locations, and actions (viz. enabling
guards and variables updates) decorate edges (viz. transitions
between locations). In PTA, fixed costs can be incurred when
taking a transition, or proportionally to the time spent in a
certain location. Furthermore, in modular frameworks, In-
put/Output broadcast synchronisation can take place between

the various modules composing a system model.

Definition 3.2. A PTA is a tuple A = (L, linit, X,Σ, E,R, I)
where:

• L is a finite set of locations,
• linit ∈ L the initial location,
• X is a finite set of clocks,
• Σ is a finite set of actions,
• E ⊆ L × L × Σ × 2X is a finite set of edges, with L

representing the set of clock constraints,
• R : L→ NX assigns a rate vector to each location, and
• I assigns an invariant to each location.

Fig. 5 shows an example of a PTA. It begins in the left lo-
cation, and waits until either the time of clock x reaches T,
or a “threshold” broadcast signal (thresh[id]) is received from
another PTA module. If T time units elapse before a signal
is received, the total cost C_total is incremented by C units,
and the clock is reset (x:=0). If a threshold signal is received,
the module takes the transition to the right location, where it
waits until x == T. When that happens the PTA moves back to
the left location, and in doing so it outputs a broadcast signal
(force[a_id], to which other PTA modules may react), resets
clock x , and increments the total cost by C.

x == T

x == T
x ≤  T

x ≤  T
force[a_id]!

C_total+=C

C_total+=C

x:=0

thresh[id]?

x:=0

Figure 5. Example of a PTA

To compute the KPI metrics using SMC, a variant of (time
bounded) CSL is used, which includes information to deter-
mine convergence of the estimation (Bengtsson & Yi, 2003;
David, Larsen, Legay, Mikučionis, & Poulsen, 2015). To
build a confidence interval for some chosen confidence level,
statistical convergence can be determined in two ways: either
the number of simulations is predefined, in which case the
width of the interval is a random variable; or the width of the
interval is predefined, in which case the number of simula-
tions is a random variable. In our studies we use both criteria,
the first to compute system reliability, and the second to com-
pute all other metrics. Two examples of property queries (for
some arbitrarily fixed confidence level) are:
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• P6T
60.01[b] - “For the time window [0, T ], compute a con-

fidence interval of width 6 0.01, for the probability of
reaching the state labelled b,”

• R6T
9999[a] - “For the time window [0, T ], compute a con-

fidence interval using 9999 simulations, for the expected
reward accumulated in states labelled a.”

In the first case, increasingly many simulations will be run,
until the statistical evidence is enough to build a confidence
interval of width 6 0.01. In the second case, 9999 simu-
lations will be run, and the width of the resulting confidence
interval cannot be known a priori. Notice that in the first case,
the time for SMC to converge is unknown, whereas in the
second case the run time can be estimated from the the time it
takes to execute a single simulation run in that time window.

As a final note for this section, we highlight that it would suf-
fice to choose a single modelling formalism and analysis tech-
nique, e.g. CTMC and PMC, and derive all KPI metrics for
the FMT of the HVAC from that choice. However, one of the
motivations of this work is to push the capabilities of formal
methods when applied to FMT analysis. In particular we are
keen on demonstrating the soundness of this approach. Con-
sequently, we show that the outcomes produced coincide—to
the expected degree—regardless of the particular formalism
and analysis technique selected.

4. FORMAL ANALYSIS OF THE CASE STUDY

In Sec. 2, several causes leading to a general HVAC failure
are listed. These affect at least one subsystem component
from the set-up depicted in Fig. 2, namely a heating coil, a
supply fan, or a radiator. In Fig. 6 we present an FMT de-
composition of the corresponding fault modes, derived from
analyses presented in Cauchi et al. (2017) for this case study.

In the tree, due to the use of OR gates, a failure of any leaf at
the down most level results in a TLE. Such leaves are EBEs
whose health decays in a stepwise manner following an Er-
lang distribution. In essence this means that each EBE starts
in an initial phase which represents a component in perfect
operational condition, aka “as good as new.” As time passes
the component will eventually degrade by internally moving
to the next phase, which represents a decay in the health of
the component. This process repeats until the component ul-
timately reaches its final phase; when this happens the EBE
fails and sends a signal that propagates through the FMT.

The time to move from one degradation phase to the next is
described by an exponentially distributed random variable.
For each EBE, all random variables describing the jumps
from the initial to the failed phase are independent and have
the same rate parameter. The number of phases and mean
time to failure of EBEs is typically derived from measure-
ments or manuals, and uniquely determines the degradation
behaviour of the component, viz. the rate of the exponential
random variables. All EBEs in Fig. 6 are derived from Ta-

ble 1, originally obtained from ASHRAE (1996); Faisal and
Mahmoud (2003). In the table, N is the number of degra-
dation phases and MTTF is the mean time to failure: for in-
stance, EBE 2 models a failure of the supply fan motor via a
(random variable with distribution) Erlang(3, 3/35).

Failure of
HVAC unit

No heating

7 8

Failure of
heating coil

2 3 4

Failure of
supply fan

Reduced capacity

1 5 6

Insufficient radiator
output power

Figure 6. FMT model of the HVAC from Fig. 2

To allow differentiated maintenance actions, for all EBEs we
label the degradation phases, i.e. we label states in CTMCs
and locations in PTA. With new we label the initial phase
of an EBE, corresponding to a new component that starts
operation in perfect condition. With failed we label the
last phase, e.g. phase 3 for EBE 2, corresponding to a failure
in the component that will propagate in the tree to cause a
TLE. With thresh we label all other phases to indicate a
degraded—but still functional—condition of the EBE.

EBE
ID

Failure
mode N MTTF

(years)

1 AHU damper broken 4 20

2 Fan motor failure 3 35

3 Supply fan obstructed 4 31

4 Fan bearing failure 6 17

5 Radiator failure 4 25

6 Radiator stuck valve 2 10

7 Heater stuck valve 2 10

8 Heat pump failure 4 20

Table 1. Details of the EBEs from Fig. 6

4.1. Maintenance policies

In Cauchi et al. (2017), maintenance schemes distinguish be-
tween inspections, repair checks, and overhauls, which in our
setting take place every half, two, and fifteen years respec-
tively. We term this policy “full maintenance,” and experi-
ment also with “half maintenance,” where the time periods
are respectively one, four, and thirty years for inspections,
repair checks, and overhauls.

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Each of these periodical service activities has a clear and dis-
tinct restoration purpose:

• Overhauls enforce a replace action that renews the whole
HVAC, sending all EBEs back to their new phase.
– When triggered, replace actions take one week (i.e.

seven days) to complete.
– This incurs in a cost of e 5000 and is the highest

point-wise investment of the whole policy.
• Repair checks can trigger a repair action, but will do so if

and only if some EBE is in its failed phase at the mo-
ment when the check takes place. The intuition is that an
expert technician visits the premises regularly, fixing any
component he finds in a failed state, namely broken.

– When triggered, repair actions take two days.
– All broken EBEs are repaired in those two days, and

thus the repair time is independent of the number
of broken components. This modelling assumption
can be easily generalised; however, we choose to
follow the scheme from Cauchi et al. (2017).

– Repaired EBEs have their health significantly re-
stored: once the action is completed they are sent
back N−2 degradation phases. The resulting phase
for the component is the first one labelled thresh
after the new phase, i.e. a repair leaves the compo-
nent “almost—but not quite—new.”

– A repair costs e 800; notice nonetheless that, if no
component is broken when the repair check takes
place, no repair action is effectively triggered and
thus the cost is not incurred.

• Inspections can trigger a clean action, but will do so if
and only if some EBE is in a thresh phase (aka de-
graded but operational) at the moment when the inspec-
tion takes place.

– Every inspection incurs a cost of e 5.
– When triggered, clean actions take a day.
– All degraded EBEs are cleaned in that day, follow-

ing the same scheme implemented for repairs.
– When an EBE is cleaned, its health is restored by

one degradation phase, which makes cleaning the
lightest among all maintenance actions.

– A clean costse 100; however notice that, if no com-
ponent is degraded when the inspections occurs, no
clean is performed and this cost is not incurred.

These maintenance procedures are not explicit in the FMT
from Fig. 6, but are implicitly implemented in the correspond-
ing repair module (RM) of the model. Moreover, all costs
described above account for maintenance checks/actions. We
also consider operational costs: e 1 is accrued per day of sys-
tem uptime, and e 4 per day of system downtime (Cauchi et
al., 2017; Macek et al., 2017).

4.2. PMC via PRISM

As described in Secs. 1 and 3, the FMT must be instanti-
ated in order to compute KPI metrics. We use CTMCs as
modelling formalism to carry out analyses via PMC. We em-
ploy the PRISM model checker (Kwiatkowska, Norman, &
Parker, 2011) to encode the model and perform the queries.
This software tool has been thoroughly tested and stands among
the most commonly used probabilistic model checkers in the
formal methods community of computer science. Modelling
in PRISM is done by means of a text format, where states are
encoded as (discrete and bounded) variables valuations, and
transition rates are written on the same line than the enabling
guard and the produced action.

1 ctmc
2 const int YEAR = 364;
3 const int DEG_N1 = 5;
4 const double DEG_MTTF1 = 20.0∗YEAR;
5 module EBE1
6 s1 : [0..DEG_N1];
7 // Kickstart
8 [trigger] s1 = 0 −> (s1’=1);
9 // Degradation
10 [ ] 0 < s1 & s1 < DEG_N1−1 −>
11 (DEG_N1−1.0)/DEG_MTTF1 : (s1’=s1+1);
12 [f1] s1 = DEG_N1−1 −>
13 (DEG_N1−1.0)/DEG_MTTF1 : (s1’=s1+1);
14 // Maintenance: clean
15 [cln] 1 = s1 −> true;
16 [cln] 1 < s1 & s1 < DEG_N1 −> (s1’=s1−1);
17 [cln] s1 = DEG_N1 −> true;
18 // Maintenance: repair
19 [rep] s1 < DEG_N1 −> true;
20 [rep] s1 = DEG_N1 −> (s1’=2);
21 // Maintenance: replace
22 [rplc] true −> (s1’=1);
23 endmodule

Code 1. PRISM CTMC snippet for EBE 1

In Code 1 we show the CTMC model for EBE 1 described
in the syntax of PRISM. The local states of the module are
encoded by the valuations of variable s1. The first transition
is on line 8: it can fire if s1 has the value 0, in which case it
updates that value to 1. The transition rate is omitted and thus
implicitly assumed = 1. Instead, in lines 10 and 11 the rate
appears explicitly: the value is (DEG_N1-1.0)/DEG_MTTF1, i.e.
(5 − 1)/(20 ∗ 364) ≈ 0.000549. Module synchronisation is
done by means of synchronisation labels, and transitions with
the same label in all system modules must occur simultane-
ously. For instance, the transition on line 22 is always en-
abled for module EBE1, but it will only fire in synchrony with
all other modules with transitions labelled rplc. In partic-
ular that transition encodes the completion of a replacement
action, which must have been triggered by an overhaul.

Property queries in PRISM follow their own specification
language, which for CTMCs corresponds to CSL. Usually,
“formulae” are defined that can inspect the internal state of
modules like EBE1. These formulae can be labelled and used
in quantitative queries like those described in Sec. 3.3.1. In
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Code 2 we show the query to quantify (un)reliability for the
EBE1 module of Code 1, in the time window [0, T ].

1 formula Failure = (s1=DEG_N1);
2 label "failure" = (Failure);
3 P=? [ F<=T "failure" ] // un−reliability

Code 2. PRISM property queries

4.3. SMC via UPPAAL

In parallel, we use PTA as modelling formalism to carry out
SMC analyses. We employ the UPPAAL toolset (Larsen,
Pettersson, & Yi, 1997; David et al., 2015) to encode the
model and perform the queries. Just like PRISM in the field
of Markovian systems, UPPAAL is a prevalent tool in the
field of TA and related formalisms like PTA. In particular, it
provides statistical model checking functionalities which we
use to perform our studies. To model PTA in UPPAAL a
GUI is available: an automaton is graphically described as a
graph, where locations are the nodes and PTA edges are the
edges in the graph. A small example modelling the TLE is
depicted in Fig. 7.

Figure 7. UPPAAL PTA snippet for the TLE

The left location (Operational) models an HVAC operating
properly. Time can pass in a location as long as its invariant
is satisfied. In Fig. 7 all invariants (uptime’ == · · · ) are always
true2 , which means that time can elapse with no restrictions.
When some component in the HVAC fails, a broadcast sig-
nal will be sent through the fail[∗] communication channel.
The TLE model in Fig. 7 will then synchronise and take the
transition towards the right location (Failed), which models a
non-operational system. As the transition is taken two vari-
ables are updated, namely the Boolean variable failed is set,
and the integral variable n_failures is incremented.

Property queries for SMC analyses need extra information
(with respect to PMC) to determine statistical convergence.
In Code 3 this is explicit in the availability query for a 15
years time horizon on line 3: the literal 9999 defines the num-
ber of simulations to run for building the confidence interval
which will be returned as the estimate. Instead, the reliability
query on line 2 of Code 3 will converge when the width of

2 Technically speaking, invariants in Fig. 7 are used to control time drift in
the clocks, and impose no condition on the passage of time in locations.
the confidence interval is less than certain predefined preci-

sion value. This numeric value is an option set on the GUI of
the tool, and does not appear explicitly on the query.

1 const int YEAR = 364;
2 Pr [ <=15∗YEAR ] (<> TLE.failed)
3 E [ <=15∗YEAR;9999 ] (max: TLE.downtime/(15.0∗YEAR))

Code 3. UPPAAL property queries

In the queries from Code 3, TLE is the instance of the model
depicted in Fig. 7, i.e. the PTA representing the top level
event of the FMT. In turn, failed and downtime are inter-
nal variables of the model: failed is the Boolean variable set
when the HVAC is not operational, and downtime is the real-
valued clock whose time drift is modified in the locations of
the TLE model from Fig. 7, and which serves to keep track
of the system downtime.

5. RESULTS

In Sec. 4 we describe the modelling frameworks used to anal-
yse the HVAC FMT. In this section we present the met-
rics computed using both (quantative model checking) tech-
niques. More specifically, we show plots describing system
reliability, availability, ENF, and differentiated costs, for both
maintenance policies at various time horizons. We compare
these metrics from different angles, to further highlight the
trade-off associated with each methodology.

5.1. Model checking of FMT

We begin by showing that the models developed in both tools,
i.e. PRISM and UPPAAL, are actually encoding the same
system behaviour. This is relevant because the CTMC and
PTA models of the FMT from Fig. 6 are independent. Thus,
evidence should be provided showing that the modelling from
Secs. 4.2 and 4.3 yields equivalent semantics for the FMT.

Specifically, for some fixed confidence level (e.g. 95%) and
time horizon T , a KPI value yielded by PMC on the CTMC
coincides with an estimate (confidence interval) yielded by
SMC on the PTA, if the interval contains the value. As high-
lighted in Sec. 3.3.2, the state space representation for anal-
ysis via PMC may require a large amount of memory. In
particular, modelling the whole FMT using PRISM (called
PMC exact) requires more than 108 states, which is an up-
per bound for the capabilities of the tool in current computer
settings (Kwiatkowska, Norman, & Parker, 2017). A novel
state-space reduction technique is proposed in Cauchi et al.
(2017), whose essence is to abstract away IEs, replacing them
for EBEs with the equivalent MTTF of the IE. The result-
ing reduced CTMC allows analysing the (approximate) be-
haviour of the whole FMT using PRISM: we call PMC re-
duced the analyses performed on such models.

To demonstrate that our CTMC and PTA models coincide,
we first focus on the subtree from Fig. 6 with IE labelled
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Figure 8. Model checking for FMT: Reduced capacity

“Reduced capacity,” composed of EBEs 1, 5, and 6. We ex-
periment with the full maintenance scheme, i.e. inspections
every 6 months, repair checks every 2 years, and overhauls
every 15 years. For this subtree all three analysis techniques
(PMC exact, PMC reduced, and SMC) can be used to esti-
mate the KPI metrics listed in Sec. 3.2, viz. reliability, avail-
ability, ENF, and total costs. In Fig. 8 we show the values
computed for T = 0, 5, 10, . . . , 25 years: estimations coin-
cide between SMC and both PMC analyses in all cases.

As expected, a small gap is observed between PMC exact and
PMC reduced, see e.g. Fig. 8b. This is a consequence of the
reduction technique, which replaces the OR gate on top of
EBEs 5 and 6 for an EBE with equivalent MTTF. Thus in-
stead of using the fastest firing time between two Erlang dis-
tributions, i.e. one for EBE 5 and one for EBE 6, in PMC
reduced we measure the firing time of a single EBE with the
same MTTF. This has the advantage of reducing the num-
ber of states of the CTMC analysed (everything below the
replaced IE is now a single EBE), but creates a minor devi-
ation in the general model behaviour. Such deviation should
increase with the number of times this reduction is performed.

These reasonings are corroborated by our studies. In Fig. 9
we show the KPI metrics for a subtree that includes the IEs
“Reduced capacity” and “Failure of heating coil,” i.e. EBEs 1
and 5–8. Again we experiment with the full maintenance pol-
icy on five time horizons. In the figure we observe that SMC

and PMC exact coincide in all values computed, but the dif-
ference with PMC reduced is exacerbated, since more IEs
have been reduced via the abstraction method.

We highlight that Figs. 9e to 9h display the different contribu-
tions to the maintenance costs. The aggregation of these val-
ues, plus the operational system costs, composes the “Total
Costs” from Fig. 9d. In particular Fig. 9h depicts the money
spent in replacements for time horizons T = 0, 5, 10, . . . , 25.
Notice that the overhaul period for full maintenance is 15
years, yet the plot shows positive costs incurred in replace-
ments at 5 and 10 years. This is a consequence of approxi-
mating discrete time periods via 3-phase Erlang distributions:
the mean time for an occurrence of the event, viz. an over-
haul triggering a replace, is 15 years, but the effective time
observed in particular simulations variates to some degree3

around such value, causing the (averaged) behaviour shown
in Fig. 9h. Research is currently being done to simulate “truly
deterministic” time periods rather than Erlang approximations.
When deterministic times are used, an increase of e 5000
must be observed for the replace costs exactly at 15 years
(and 30 years and so on), and not before.

Finally, we present our studies on the full HVAC model from

3 A random variable following an Erlang(3/15, 3) distribution has standard
deviation

√
3

(3/15)2
= 5
√
3.
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Figure 9. Model checking for FMT: Reduced capacity & Failure of heating coil
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Fig. 6. In this case and as previously discussed, PMC ex-
act cannot be used due to state space explosion and physi-
cal memory constraints. As a result only SMC and PMC re-
duced are compared, measuring the KPIs in seven time hori-
zons for both maintenance policies, viz. full and half main-
tenance. The outcomes are presented in Fig. 10: the differ-
ence between both analysis techniques is analogous to the one
observed in Fig. 9, and therefore falls within the acceptable
range.

5.2. Comparison of maintenance policies

So far the focus has been on correctness, and in Sec. 5.1 we
have shown that both PMC and SMC are capable of provid-
ing concrete (and matching) KPI metrics for the FMT from
Fig. 6. In this section we use the values presented in Fig. 10
to assess the RAMS properties of the HVAC model. Con-
cretely, we compare and discuss the two maintenance policies
studied, i.e. (i) full maintenance, for which inspections, repair
checks, and overhauls, take place every half, two, and fifteen
years respectively, and (ii) half maintenance, where they take
place every one, four, and thirty years respectively.

First and foremost, we notice that system resilience is sig-
nificantly affected when the service periods are halved. For
time horizons T = 5, 10, 15, . . . , 35, reliability is lower for
half maintenance than full maintenance by factors of approx-
imately 11%, 24%, 37%, 50%, 60%, 70%, and 82%, see
Fig. 10a. In turn, availability is lower for half maintenance
by approximately 6%, 9%, 11%, 12%, and 13% for the last
three time steps, see Fig. 10b. Lastly, ENF with half mainte-
nance is consistently around twice that of full maintenance for
all seven time horizons, see Fig. 10c. Hence, it is abundantly
clear that in terms of system resilience, the full maintenance
policy is much more effective than half maintenance.

Given those values for the KPIs measuring system resilience,
it is very interesting to see in Fig. 10d that the costs incurred
by either policy differ by a very small amount, for all time
horizons. This is a result of the interplay among: the extra
costs incurred in maintenance for the full policy, the higher
availability this generates for the system, and the operational
costs considered, in which there is a 1-to-4 ratio between
system uptime and downtime costs. More in detail, the half
maintenance policy accrues to less expenses derived from main-
tenance actions than the full policy. The aggregated costs in-
curred by all maintenance actions (see Figs. 10e to 10h) show
that the full maintenance policy is more expensive than half
maintenance by 57%, 64%, 70%, 70%, 67%, 63%, and 60%
for time horizons T = 5, 10, . . . , 35. Nonetheless, using half
maintenance results in more system downtime, which accrues
e 4 per day. This should be contrasted with the e 1 per day
accrued per day of system uptime.

The exact amount of money spent in maintenance/operational
costs is also relevant. With the full policy, maintenance costs

grow in a linear fashion from ≈ e 650 to e 11135. These
values account for 30% (5 years) to 76% (35 years) of the op-
erational system costs. In contrast, with half maintenance, the
increase in maintenance costs is also linear and goes from ≈
e 350 to e 6000, for values which account for 15% (5 years)
to 31% (35 years) of the operational system costs. In both
cases and on average, the operational costs have a greater im-
pact than maintenance costs in the total expenses.

In summary, the full policy has higher maintenance expenses
but achieves higher availability. This means that the opera-
tional costs are somewhat lower for full than for half main-
tenance. The exact difference in system availability between
both policies is key, as well as the cost ratio between the op-
erational costs for system downtime and uptime. The general
outcome of all these factors, as observed in Fig. 10d, is that
the total costs are practically the same with both maintenance
policies. Therefore, the full policy is evidently better than half
maintenance, given the higher system resilience it yields.

As a final remark for this section we mention that, when dif-
ferent maintenance actions are involved, like the clean-repair-
replacement of the setting studied, system dynamics can be-
come complex and difficult to predict. This is illustrated by
Figs. 10f and 10g, where we observe that the expenses to
clean components are higher for full maintenance, but those
to repair components are higher for half maintenance. The
reason is that clean are triggered by inspections, which oc-
cur more frequently in full maintenance. In comparison, in
half maintenance, cleans are triggered less often and compo-
nents can degrade more, and thus the likelihood of observing
a failed EBE is higher. Since repairs only affect EBEs in its
failed phase, this explains why half maintenance incurs in
more costs for repairs than the full policy. This may not seem
particularly hard to foretell; nonetheless it is a priori less ob-
vious that, in spite of such more efficient cleans in the full
policy, the aggregated maintenance costs incurred are lower
for the half maintenance policy in general, mostly due to costs
derived from replacements (see Fig. 10h).

5.3. Comparison of computational times

Lastly, we compare the computational performance of SMC
vs. PMC reduced, for the analyses used to produce the values
presented in Fig. 10. SMC experiments have been run in a
cluster with AMD Opteron™ 4386 processors, each with ac-
cess to 64 GB of dedicated DDR3 RAM. PMC experiments
have been run in a cluster with Intel® Xeon® E5-2640 v3 pro-
cessors, each with access to 64 GB of DDR4 RAM. The
resulting execution times in seconds of both techniques, for
both maintenance policies and all KPIs, are listed in Table 2.

In the case of PMC reduced, the times listed include the com-
putation of the MTTF used to perform the IE-to-EBE reduc-
tion, plus the subsequent time it took PRISM to compute the
corresponding KPI from the resulting reduced model. Since
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Figure 10. Model checking for FMT: complete HVAC, half & full maintenance
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T Metric PMC SMC Metric PMC SMC
half full half full half full half full

5 Reliability 0.6 0.8 6.3 6.1 Availability 1.0 1.1 7.9 13.1
10 1.6 1.2 14.4 17.0 2.3 2.1 15.5 25.4
15 2.0 1.7 17.4 29.0 3.2 3.5 24.9 35.8
20 2.3 2.9 19.5 38.6 4.4 4.1 31.2 43.2
25 3.0 3.2 17.9 46.2 5.5 3.4 31.6 52.2
30 3.4 3.6 16.1 49.8 7.3 3.2 35.5 57.6
35 4.3 4.4 13.9 52.4 8.2 3.5 38.9 61.9
5 ENF 1.1 1.2 7.9 12.9 Total costs 5.4 5.2 29.8 47.9
10 2.2 2.3 15.4 24.0 10.5 9.4 56.4 90.0
15 3.2 3.5 21.3 34.2 14.0 13.9 78.5 119.4
20 4.9 4.0 27.7 43.3 17.6 17.1 94.7 145.6
25 5.6 4.4 31.6 50.1 22.1 19.7 105.7 168.3
30 6.2 4.3 36.0 55.9 27.0 22.1 116.4 181.0
35 7.0 4.5 38.2 61.5 31.7 23.6 120.0 187.0

Table 2. Time in seconds to compute KPIs using PMC and SMC, for half and full maintenance policies

the process of plugging in the computed MTTF into the re-
duced CTMC (from which PRISM computes the metric) is
not yet automated, that is omitted from our measurements.
We note however that, if the task were fully automated, such
time should be negligible with respect to the “true analysis
times” required to compute a KPI value.

Table 2 shows that, as expected, PMC converges to a result
in significantly less time than SMC. For reliability, availabil-
ity, and ENF, PMC is usually ≈ 10 x faster than SMC; for
costs computation the difference is ≈ 6 x in favour of PMC.
In general, this is a consequence of SMC requiring a suffi-
ciently large random sample (viz. number of simulations) to
achieve the desired statistical criteria and build the confidence
interval. Here, the underlying trade-off is in runtime vs. com-
puter memory: “standard” PMC, i.e. PMC exact, could not
be used because its state space (and thus computer memory)
requirements go beyond current computer settings. A reduc-
tion technique must be used to alleviate this problem, los-
ing in exchange some precision in the metrics. On the other
hand, it must be highlighted that the confidence criteria re-
quested for our SMC analyses is standard but not particularly
challenging. Requesting 99% confidence level and more pre-
cise (narrower) confidence intervals would greatly increase
the computation times of SMC.

For both techniques and all metrics, computation times in-
crease linearly with the time horizon analysed. However,
PMC is not greatly affected by the maintenance policy stud-
ied, because its computational times are mostly a function
of the structure of the underlying model. This structure is
given by the set of (CTMC) modules and their communica-
tion mechanisms, rather than by the particular parameters like
e.g. inspection frequency. Such parameters do play a minor
role, since they may influence the number of iterations re-
quired to determine convergence to a fixed-point in the in-
ternal mechanisms of the model checking algorithms. In-
cidentally, the effect of these parameters in the number of

iterations could be counter-intuitive: ENF, availability, and
costs computations with PMC are faster for full maintenance
than for half maintenance, see Table 2. In any case, PMC
is much less affected by the maintenance policy than SMC.
Since SMC uses discrete event simulation as its backbone,
the more events per time unit that need to be attended, the
more computation time it takes to advance one time unit. On
average, the full policy generates twice as many events per
time unit than half maintenance, and therefore it takes longer
to compute the metrics for full policy. The system dynamics
are quite complex, see e.g. the final discussion in Sec. 5.1 on
the number of cleans vs. the number of repairs for full and
half maintenance. Consequently, quantifying how longer will
SMC analyses take for the full policy is not straightforward.
It is nevertheless clear that half maintenance is faster to anal-
yse via SMC than full maintenance, which is corroborated in
practically all time measurements presented in Table 2.

6. CONCLUSIONS

In this work we study the RAMS properties of an HVAC
unit, applying formal methods to perform fault tree analysis.
We model the failure modes of the system in the presence of
maintenance actions by means of an FMT, to which we give
semantics using the CTMC and PTA formalisms. We then
analyse the resulting model(s) by computing KPI metrics via
PMC and SMC respectively for each formalism. The goal
is twofold: assessing system RAMS properties under two
different maintenance policies, namely full and half main-
tenance; and comparing the PMC and SMC approaches to
perform such assessment.

To validate our studies we first confirm the equivalence be-
tween the two (concrete models and) techniques in Sec. 5.1,
where we highlight the need for a state-space reduction mech-
anism to enable PMC analyses. Next, we analyse the two
maintenance policies in Sec. 5.2, and show that system re-
silience in terms of reliability, availability, and ENF, is con-
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siderably higher under the full maintenance policy than with
half maintenance. Furthermore, the total costs incurred are
very similar with both policies. We conclude that full main-
tenance is better than half maintenance, answering our first
goal, and highlighting at the same time the benefits of using
FMTs during maintenance planning and assessment.

As for the second goal, we report in Sec. 5.3 that PMC is sig-
nificantly faster to compute all RAMS metrics. This however
comes at the expense of applying a state-space reduction tech-
nique on the CTMC model, which generates a (predictable)
bias in the metrics. Alternatively, SMC can study more gen-
eral models with less design effort, e.g. using deterministic
times should be straightforward. The main drawback of SMC
is the need for substantially longer computation times in gen-
eral, which may also depend on parameters like the frequency
of maintenance actions (which have much less impact on the
computation times of PMC) or the precision desired for the
confidence interval to be generated.

6.1. Future work

Currently in the PMC community work is being done towards
extending quantitative model checking to PTA (Kwiatkowska
et al., 2018). This is the first natural extension of our work.
Analysing PTA via PMC would reduce the design effort re-
quired: by using PTA over CTMC we would no longer need
to perform the state-space reduction, and thus the accuracy of
the computed values should improve, at the same time main-
taining the high computational performance of PMC

We are also planning to extend our research in the following
directions:

• Automate the state-space reduction algorithm required to
perform PMC on large models (see Sec. 5.1);

• Compare and contrast a larger set of maintenance polices
for this case study with various time horizons;

• Explore different trade-off schemes between operational
and maintenance costs;

• Validate the results computed for our models against KPI
metrics obtained from real data.

Note however that, due to the slow degradation rate of HVAC
components, obtaining the data required to perform the last
task could be particularly involved.
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