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Abstract—SRAM-based Field Programmable Gate Arrays (FP-
GAs) have been used in the aerospace application for more
than a decade. Unfortunately, a significant disadvantage of these
devices is their sensitivity to radiation effects that can cause
bit flips in memory elements and ionisation induced faults in
semiconductors, commonly known as Single Event Upsets (SEUs).
An early dependability analysis on SRAM FPGA-based safety-
critical application will enable the designers to develop a more
reliable and robust design complying with design requirements,
such as the DO-254 standard. We propose a methodology based
on probabilistic model checking, to analyze the dependability
and performability properties of such designs to guide design
decisions. Probabilistic model checking is a well known formal
verification technique, and the main advantage is that the analysis
is exhaustive, which results in numerically exact answers to the
temporal logic queries that contrast with discrete-event simula-
tions. In the proposed methodology, starting from the high-level
description of a system, a Markov (reward) model is constructed
from the extracted Control Data Flow Graph (CDFG). Various
dependability and performability related properties are then
verified automatically using the PRISM model checker tool.

I. INTRODUCTION

SRAM-based FPGAs offer increasingly attractive options
for aerospace applications due to field programmability, the
absence of non-recurring engineering costs, low manufacturing
costs and so many other advantages. However, these devices
are sensitive to Single Event Upsets (SEUs) [1]. Dependability
(reliability, availability, and safety) and performability are
major concerns in safety-critical applications that are common
in the aerospace industry. An early analysis of dependability
and performability impacts due to SEU allow the designers to
develop more reliable and efficient system, and may reduce
the overall cost associated with the design effort. Our work
aims at achieving these goals.

In this paper, we propose a means by which formal verifi-
cation techniques, in particular, probabilistic model checking
[2] can be applied at early design stages to analyze the de-
pendability and performability of such reconfigurable systems.

The aim of this paper is to present the overall methodology
for high-level design analysis and to summarize our learning
from recent modeling results.

Probabilistic model checking is widely used to verify the
systems whose behavior is stochastic in nature. Probabilistic
model checkers, for example, PRISM [3], have the ability
to verify exact solutions for probabilistic properties in an
automated manner. Probabilistic model checking is mainly
based on the construction and analysis of a probabilistic
model, typically a Markov chain or a Markov process. These
models are constructed in an exhaustive fashion, and hence
these models explore all possible states that might occur in
a system. This contrasts with discrete-event simulations, in
which approximate results are generated by averaging results
from a large number of random samples.

To analyze a design at high-level, we start from its Control
Data Flow Graph (CDFG) [4] representation, obtained from a
high-level description expressed using a language such as C++.
Depending on the goal of analysis (the methodology currently
can handle 3 different goals), possible failures of a system and
their mitigation strategies are then modeled with the PRISM
modeling language. The failure rates of the components are
obtained from a worst-case component characterization li-
brary [5]. Given the design requirements, properties related to
dependability and performability are automatically evaluated
using the PRISM tool to guide design decisions. It is worth
mentioning that, for this work, the assumptions are: (1) The
SEU may only cause SBUs (Single Bit Upsets) in the design.
(2) The design may employ periodic blind scrubbing. So when
we mention scrubbing in this paper, we refer to periodic blind
scrubbing [6]. (3) The systems are modeled using the concepts
of Continuous-Time Markov chain (CTMC) (the design option
analysis branch in the methodology uses a Markov Reward
Model [7] which is also a variant of CTMC). (4) The target
FPGA platform for our analysis is the Xilinx Virtex-5. This is
the technology for which the available characterization library
was produced.



The remainder of the paper is organized as follows. Section
2 reviews the preliminaries. Section 3 presents the state-of-the-
art techniques and description of the proposed methodology.
We present our learning, and experience from this project
in section 5 and section 6 concludes the paper with future
research directions.

II. PRELIMINARIES

A. FPGA and Single Event Upsets

In a reconfigurable FPGA, the configuration memory is a
collection of bits commonly known as a bitstream. Bitstream
bits set the values of the LUT, flip-flop and memory initial-
ization values, and states of switches and connection boxes
that route signals through the FPGA. Therefore, interaction
with high-energy radiated particles that are common in the
aerospace environment, such as protons, neutrons, and heavy
ions, may corrupt the FPGA configuration. The effects of these
particles on electronics are collectively known as Single-Event
Effects (SEE) and there are several types of SEE that are
relevant to FPGAs. Single-Event Upsets (SEUs) occur when
one or more bits in configuration memory changes state due to
a radiation event. If only one bit is affected, then it is called a
Single-Bit Upset (SBU). If more than one bit is affected, then
it called an MBU.

B. Scrubbing and TMR

A scrubbing technique [6] is a single algorithm used in the
system to mitigate configuration-memory upsets. A scrubbing
strategy is composed of at least one fault correction technique
and optionally, a fault detection technique. Blind scrubbing is
a very popular scrubbing strategy with no detection technique
and does not interrupt the system operation [1]. Scrubbing can
be done at a specified rate meaning that there might be a period
of time between the moment the upset occurs and the moment
when it is repaired. That is why another form of mitigation
is required, such as a redundancy-based solution known as
TMR [8]. TMR is a technique for enhancing the reliability,
in which each module in a circuit or the whole system is
triplicated. A majority vote (two out of three) is taken on the
TMR outputs to determine the final module output.

C. Probabilistic Model Checking

Model checking [9] is a well established formal verification
technique to verify the correctness of finite-state systems.
Given a formal model of the system to be verified in terms
of labelled state transitions and the properties to be verified
in terms of temporal logic, the model checking algorithm
exhaustively and automatically explores all the possible states
in a system to verify if the property is satisfiable or not.
If not, a counterexample is generated. Probabilistic model
checking deals with systems that exhibit stochastic behaviour,
such as fault-tolerant systems. Probabilistic model checking
is based on the construction and analysis of a probabilistic
model of the system, typically a Markov chain. In this report,
we focus on the continuous-time Markov chains (CTMCs) and

Markov reward models [10], widely used for reliability and
performance analysis.

A CTMC comprises a set of states S and a transition rate
matrix R : S × S → R≥0. The rate R(s, s′) defines the delay
before which a transition between states s and s′ takes place.
If R(s, s′) 6= 0 then the probability that a transition between
the states s and s′ might take place within time t can be
defined as 1 − e−R(s,s′)×t. No transitions will take place if
R(s, s′) = 0. Exponentially distributed delays are suitable for
modelling component lifetimes and inter-arrival times.

In the model-checking approach to performance and
dependability analysis, a model of the system under
consideration is required together with a desired property
or performance/dependability measure. In case of stochastic
modelling, such models are typically CTMCs, while properties
are usually expressed in some form of extended temporal
logic such as Continuous Stochastic Logic (CSL) [11], a
stochastic variant of the well-known Computational Tree
Logic (CTL) [9]. Below are a number of illustrative examples
with their natural language translation:

1. P≥0.95[♦ complete] - “The probability of the system
eventually completing its execution successfully is at least
0.95”.

2. shutdown ⇒ P≥0.81[¬ fail U≤500 up] - “Once a
shutdown has occurred, with probability 0.81 or greater,
the system will successfully recover within 500 hours and
without any further failures occurring”.

Additional properties can be specified by adding the notion
of rewards. Each state (and/or transition) of the model is
assigned a real-valued reward, allowing queries such as:

R = [♦ success] - “What is the expected reward accumulated
before the system successfully terminates?”.

Rewards can be used to specify a wide range of measures
of interest, for example, the number of correctly delivered
packets or the time that the system is operational. Of course,
conversely, the rewards can be considered as costs, such as
power consumption, expected number of failures, etc.

III. STATE-OF-THE-ART AND PROPOSED METHODOLOGY

There are three possible ways to analyze SEU sensitivity
in FPGA based designs: 1) hardware testing such as parti-
cle beams and laser testing 2) fault injection emulation or
simulation; and 3) analytical techniques. These three types
of techniques are complementary, and they are applied at
different product design steps. Hardware testing techniques
are the most accurate of all. But such techniques require
finished implementations. Also they may introduce physical
damages to the device under test. Therefore they are very
costly. Fault injection is a popular method. However, in fault
injection test time grows with the number of possible test
cases. In contrast, analytical methods tend to be relatively
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Fig. 1: Proposed Methodology for High-level Dependability Analysis

less accurate in some aspects. Still, they can provide a much
better controllability and observability. Also analytical meth-
ods enable quick estimation of SEU susceptibility, with no
risk of damaging the devices [12]. Moreover, they can capture
features of the true test conditions that would be very hard
to accurately reproduce when bombarding the circuit or while
performing fault injection. Analytical estimation traditionally
provides information at an earlier stage in the design cycle
compared to the other two techniques.

Early analysis on a design can help designers to take de-
cisions before finalizing an implementation, such as adopting
proper mitigation technique(s) that will satisfy requirements
and constraints. This may reduce the overall effort, time and
cost of the design. In our proposed methodology, we address
three issues in the SRAM-based FPGA design: (1) Design
options analysis (system can be designed in different ways
with different number of components allocated, and there is a
need to decide on design options), (2) DO-254 [13] verification
(Design Assurance Level analysis) with scrub optimization
(where relevant questions relate to scrubbing parameters and
frequency), and (3) TMR partitioning for reliability improve-
ment (that can lead to optimizing the number of partitions

in relation to the scrub frequency for instance). The first two
issues were addressed as separate entities in our earlier works
[14], [15]. The modeling and analysis of TMR partitioning is
currently in progress and the initial results can be found in
[16].

In contrast with previous contributions, in this paper, for
the first time, we put all the branches of the method together
and describe all parts from an overall perspective - as a single
entity. Fig. 1 shows the proposed methodology. For ease of
understanding the figure has been color coded. The gray boxes
means that the information obtained from these boxes is shared
between different branches of the methodology. The boxes
in same colors mean that they belong to the specific branch,
with similar color in the methodology. For example, the boxes
in blue are part of the DO-254 analysis/scrub optimization
branch. The rectangle (with dashed lines) represents the work-
in-progress portion of the methodology. We start from the
data flow graph of the application extracted from the high-
level description of the design. Once the CDFG is extracted,
depending on the target analysis, one of the three branches
can be chosen. We describe the steps in the methodology as
follows:



A. CDFG extraction:

The CDFG is used to represent the functionality of a
selected C/C++ model, which is composed of arithmetic or
logical operations and capable of representing all behaviors
present in that algorithm. We use GAUT [17] to extract the
CDFG from a high-level design description expressed using
C/C++. The C/C++ model can be written by the designer or
can be generated automatically in case the design is modeled
in Matlab/Simulink.

B. Design options evaluation

In this branch of the methodology, we use probabilistic
model checking to evaluate the trade-off between available
design options in terms of dependability, performability, and
area. The main intention is to demonstrate that in some cases,
a redundancy-based solution might not be the best choice as
one may expect. Alternatively, for those cases, rescheduling in
conjunction with scrubbing can be a good option. High-level
synthesis algorithms such as forced-directed list scheduling
[18] can generate different CDFGs depending on components
availability. Switching to another CDFG allows recovering
from a failure while a system can continue its operation,
possibly with a lower throughput. We model such a system
with rescheduling, redundant components and scrubbing in
PRISM and then analyze the results that support our claim.
Steps of this branch of the methodology are described as
follows; however, the detail can be found in [14].

C. Configuration:

The configuration of a system is the allocation of compo-
nents that implements a CDFG. Each design option represents
a configuration. So a configuration represents the initial set
of available components before any failure has occurred. To
analyze a configuration, we model it with the PRISM modeling
language.

D. Characterization library:

As the upset rates λ is highly dependent on device process
technology, architecture, and orbits of interest, so this param-
eter is different for each device family. We use CREME96
with radiation cross sections from [19] to find per bit upset
rate λbit for Xilinx Vitex-5 in ISS HEO and LEO orbit. The
failure rate for a component in the design (or the whole
design) can be calculated using the equation: λdesign =
λbit×Number of critical bits in the component(design).
Note that we use the characterization library to obtain the
failure rate of the components for the CTMC model, and the
methodology is generic enough to be used with a different
characterization library, with more precise and accurate data,
without any major changes. The details of the characterization
library used in our methodology can be found in [14], [5].

E. Modeling of dependability and performability:

For each of the design options (configurations), a Markov
chain dependability model is built by including the pos-
sible component failures, fault coverage and possible re-

covery (rescheduling/scrubbing/redundancy). Using the high-
level synthesis technique, each state of the CTMC model
is augmented with associated performance and area rewards.
The cumulative reward of this single Markov Reward Model
(MRM[7]) is then used to evaluate the corresponding design
option with respect to the metric of interest.

F. DO-254 analysis with scrub optimization:

More frequent scrub means fewer chances of accumulating
SEUs. However, more frequent scrub requires more power, and
many space missions set a need for low power requirement.
Hence, in such cases, frequent scrubbing might not be a good
option. This branch of the methodology is dedicated to veri-
fication of the DO-254 Design Assurance Level (DAL), and
also the verification of high-availability requirements while
optimizing the scrub frequency. We analyze the effect of scrub
rate variation on the design to suggest the lowest possible scrub
frequency that will meet the availability requirements and also
to assess reliability enhancements that can be obtained with
a suitably designed architecture leveraging techniques such as
TMR. Detail of this part of the work can be found in [15];
however, steps of this branch are described as follows:

G. Resource estimation:

Resources estimation is based on the extracted CDFG. We
analyze each of the nodes in the graph to compute resources
required to implement an application on a specific FPGA
target platform. Estimated resources depend on the style of
implementation of the design. For example, a full parallel
application of a CDFG will require a maximum number of
resources with maximum speedup. However, depending on the
area, performance and power requirement, the CDFG might
require scheduling to deal with the constraints.

H. Failure and Scrub Parameter calculation:

Once the Markov model is built, we need to populate the
model for further analysis. To calculate the failure rate we
use the information from the resource estimation step and the
information from the characterization library which states the
number of configuration bits required to implement a specific
resource in a target FPGA. Three different types of parameters
are required, namely (1) Environmental parameters (2) Target
system parameters and (3) Mitigation parameters. Details of
these parameter estimations can be found in [15].

I. Modeling of Blind-Scrub and TMR using Erlang:

Maintenance actions such as scrubbing cannot generally
be modeled by simple exponential distribution within the
Markov process. For example, a significant repair or periodic
inspection time does not follow the exponential distribution.
Therefore, we have to develop an approximation methodology
to allow the Markov processes to model significant holding
times. The concept of a phase-type distribution [20], [21]
can be used to approximate a time delay until absorption to
one of the states in the Markov chain, commonly known as
the Erlang process. In other words, non-exponential holding



time distributions can be approximated by inserting multiple
intermediate states between the two conventional degradation
states. We use Erlang distribution to model blind scrubbing in
the FPGA using PRISM modeling language.

J. Optimization of TMR partitioning and scrubbing

The aim of this part of the methodology is to optimize
the number of partitions in a TMRed system and scrub
frequency depending on design requirement. Previous works
in this area [22] address this issue either via fault injection
or by assuming equal sized partitions [23]. In contrast, our
methodology handles this at early design stages and can deal
with both equal and non-equal sized partitions.

K. Modeling of Partitioned TMR and analysis:

Depending on the number of partitions defined by the user
(the user can also choose the uneven size of each partition),
each module (of partitioned TMR) in each partition may have
one or more nodes (nodes in the CDFG represents a basic
operation such as add, multiply, etc, so the number of nodes
in each module defines the partition size, also known as
window size). The characterization library provides us the
estimate for the failure rate of each basic component. Using
this approach, the failure rate calculation of each module
becomes a straight forward approach, e.g. the failure rate of a
TMR module in a specific partition is equal to the total failure
rate of the components allocated to that module. Based on the
failure rate of each module and the user defined scrub rate, a
PRISM model is then built. The PRISM model checker then
automatically converts the PRISM model to equivalent CTMC
representation. Different reliability and availability properties
are then verified to check if the design meets the reliability and
availability requirements given the number of partitions with
a scrub rate. The PRISM model checker provides the quan-
titative results. If the requirements are not met, the number
of partitions or the scrub frequency is then modified, and the
analysis is performed again. By analyzing the resulted graphs
from the analysis, the designer can choose the appropriate
number of partitions with adequate scrub frequency to meet the
design requirements (the decision is of course design specific).

IV. DISCUSSION

A. Lessons learned

We have learned some interesting lessons from the applica-
tion of our proposed methodology. We evaluated four different
design options in [14]. We observed that, from the reliability,
availability and safety point of view, the redundancy-based
solution works well. However, we also notice that extra
reliability provided by the redundancy is not always useful
to suppress the additional area overhead. If the designer is
aimed to optimize overall reliability, area, and performance,
then in such cases rescheduling with scrubbing is good enough
to serve as a fault recovery and repair mechanism. This
is an important observation since it guides the designer to
choose a proper design option depending on his needs. DO-
254 verification and Scrub optimization branch showed how

to verify the high-availability requirements and the design
assurance level compliance at high-level while minimizing the
scrub frequency. Modeling results revealed that it is possible to
find an appropriate scrub interval (slowest scrub rate) to save
power while meeting the dependability requirements instead
of choosing the highest scrub frequency. Note that, frequent
scrubbing requires more power. That is why optimization
of scrub for power-aware applications (such as deep space
missions) plays a major role in the design. We also analyzed
some early results that indicate how TMR partitioning and
scrubbing trade-off can be evaluated at early design stages. A
major observation from this analysis is when the scrub interval
is smaller (frequent scrub), the number of partitions plays a
major role increasing the reliability of a system. However, even
for a delayed scrub, the improvement is noticeable enough.
The more the number of partitions (which means smaller
modules), the less frequent scrub will be required to meet
a target reliability. The fewer number of partitions (larger
module size) will require more frequent scrub to meet a
target reliability requirement. For availability, the number of
partitions is important for the cases where the scrub interval
is long. For the case of frequent scrubbing, the number of
partitions increases the availability to a minimal level, but for
longer scrub intervals the availability improvement with the
increased number of partitions is quite significant. All these
three different kinds of analysis using our methodology can
provide important guidelines to the designer at an early design
stages. Such guidelines can help the designer not only to adopt
proper mitigation (depending on design requirement) but also
will add more confidence in the design.

B. Scalability

To demonstrate the applicability of our approach, we al-
ready applied our methodology on a DSP benchmark circuits
[15], [14]. PRISM model checker includes multiple model
checking engines, many of which are based on symbolic
implementations (using binary decision diagrams and their
extensions). These engines enable the probabilistic verification
of models of up to 1010 states. PRISM also features a
variety of advanced techniques such as abstraction refinement
and symmetry reduction. It is worth mentioning that it also
supports approximate/statistical model checking through a
discrete event simulation engine. So considering the capability
PRISM model checker, it is also possible to analyze larger
systems using our methodology. However, since the PRISM
modeling from CDFG is not fully automated, this restricts
us to do so. In the future, we will work to overcome this
limitation.

V. CONCLUSION

We presented a methodology for high-level dependability
analysis of SEU sensitive designs. Our analysis based on the
proposed methodology is capable of evaluating a design at an
early stage regarding the required scrub interval, the number
of TMR partitions and also can evaluate design alternatives via
rescheduling. The first two part of the methodology presented



in this paper has already been implemented successfully [14],
[15], and the contribution regarding the TMR partitioning is
still in progress. For the future work, we would like to extend
the methodology to analyze adaptive mitigation techniques,
e.g. runtime adoption of different mitigation schemes depend-
ing on the predicted failure rate.
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